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ABSTRACT
Data augmentation has been widely applied in anomaly de-
tection, which generates synthetic anomalous data for train-
ing. However, most existing anomaly augmentation methods
focus on image-level cut-and-paste techniques, resulting in
less realistic synthetic results, and are restricted to a few pre-
defined patterns. In this paper, we propose our Controllable
Anomaly Generator (CAGen) for anomaly data augmenta-
tion, which can generate high-quality images, and be flexibly
controlled with text prompts. Specifically, our method fine-
tunes a ControlNet model by using binary masks and textual
prompts to control the spatial localization and style of gener-
ated anomalies. To further augment the resemblance between
the generated features and normal samples, we propose a fu-
sion method that integrates the generated anomalous features
with the features of normal samples. Experiments on stan-
dard anomaly detection benchmarks show that the proposed
data augmentation method significantly leads to a 0.4/3.1 im-
provement in the AUROC/AP metric.

Index Terms— Anomaly detection, Data augmentation,
Diffusion model

1. INTRODUCTION

Anomaly detection is an important task in both industrial ap-
plications and academic research. Since in real-world scenar-
ios anomalous data are considerably less frequent than normal
data, researchers have concentrated on self-supervised meth-
ods [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. These methods exclusively
train on normal data and can be categorized into reconstruc-
tion based and feature distance based methods. The recon-
struction based methods assume that a model trained only on
normal data cannot effectively reconstruct anomalous parts.
On the other hand, feature distance based approaches aim to
obtain a tight representation of the normal state, with any de-
viation from this representation being considered anomalous.

To address the scarcity of anomalous data, both recon-
struction based and feature distance based methods resort
to generating synthetic anomalies [2, 3, 7]. Although these
synthetic anomalies differ from real anomalies, they can still
serve as supervisory signals and yield satisfactory results.
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Fig. 1. The augmented anomalous images obtained through
various methods. (a) presents the anomaly masks. Columns
2-4 present the images generated by (b) CutPaste [2], (c)
DRAEM [3], and (d) our method.

Intuitively, if the synthetic anomalies follow a more similar
distribution of the real anomalous patterns, they will result in
more favorable detection results. This motivates us to take
advantage of the recent progress of diffusion models, which
can generate high-quality images and be flexibly controlled
with text prompts.

Latent diffusion models (LDMs) like Stable Diffusion
[11] have achieved remarkably impressive results in image
generation. We observe that by guiding the pretrained Stable
Diffusion model using textual prompts, it can comprehend the
text and generate images of anomalies that closely resemble
real-life instances. However, this is insufficient for augment-
ing datasets for anomaly detection tasks. The primary reason
is that the images generated in this manner lack annotation
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Fig. 2. Anomalous images generated through different textual
prompts by CAGen. Where (a) represents the normal sample,
(b) indicates the anomaly location mask, (c) corresponds to
the “colored pill”, and (d) corresponds to the “scratched pill”.

information. Besides, there is a significant discrepancy be-
tween the generated images and the real samples, since the
model was pretrained on a much diverse and different dataset.

In response to these limitations, we propose our two-stage
method Controllable Anomaly Generator (CAGen) using dif-
fusion model. In the first stage, we employ a fine-tuned Stable
Diffusion Model via ControlNet [12], where a binary mask
and text prompt are utilized to govern both the location and
style of the generated anomalies. The mask and text offer the
necessary annotation information for the anomalies. In the
second stage, we ensure the resemblance to normal samples
by fusing the generated anomalous features with the features
of normal samples at the feature level. In summary, our paper
has the following contributions:

1. We introduce CAGen, an innovative data augmentation
methodology for anomaly detection.

2. By utilizing masks and textual prompts to dictate the
location and style of anomalies, CAGen can produce
high-quality anomalous images.

3. We propose Anomaly Feature Fusion, integrating the
features of normal samples with the generated anoma-
lous features.

2. RELATED WORK

2.1. Data augmentation in anomaly detection

Data augmentation is a widely adopted approach in anomaly
detection to capture anomalous images as supervisory signals.
Cutpaste [2] and DRAEM [3] primarily generate synthetic
anomalies at the image level, while SimpleNet [7] induces
anomalies at the feature level. Specifically, Cutpaste [2] fab-
ricates anomalous images by randomly cutting a patch from
an image and then pasting it to a random position. DRAEM
[3], on the other hand, utilizes random Perlin noise to deter-
mine the location of the synthetic anomaly and subsequently
pastes images from the DTD dataset [13] onto those posi-
tions. SimpleNet [7] generates anomalous data by adding a
subtle Gaussian noise to the features of normal images. These

methodologies have collectively affirmed the efficacy of data
augmentation in anomaly detection.

2.2. Diffusion models

Denoising Diffusion Probabilistic Models (DDPM) [14] have
demonstrated state-of-the-art performance in the realm of im-
age generation. To address the generation time, Denoising
Diffusion Implicit Models (DDIM) [15] offers improvements,
reducing the required time span. Furthermore, the Stable Dif-
fusion Model [11], by integrating VAE [16] and diffusion
models, further minimizes image generation time. Concur-
rently, many subsequent works, such as ControlNet [12], are
built upon the Stable Diffusion framework.

ControlNet [12] seeks to control image generation with-
out compromising the generative capabilities of the pretrained
Stable Diffusion Model [11]. By incorporating the Control-
Net structure into the pretrained Stable Diffusion model, we
obtained the final model structure. Specifically, the upper half
of ControlNet replicates the top half of the Stable Diffusion
U-Net, while the lower half employs a structure called “zero
convolution”. By locking the weights of the pretrained Sta-
ble Diffusion model and training solely on a limited target
dataset, ControlNet can achieve impressive control efficacy
while maintaining robust generalization capabilities.

3. PROPOSED METHOD

In this section, we introduce our framework for generating
anomalous samples. As shown in Fig. 3, the process of gen-
erating these samples is divided into two stages. The first
stage is Anomaly-Guided Feature Generation. Using a desig-
nated mask combined with a textual prompt, we instruct the
denoising Unet to produce anomaly features at designated lo-
cations. The second stage is Anomaly Feature Fusion, where
the features of normal samples are fused with the generated
defect features at the feature level, resulting in samples that
closely resemble real anomalous instances.

3.1. Anomaly-Guided Feature Generation

Due to the extensive training of the pretrained Stable Dif-
fusion model [11] on a wide range of image-text pairs, it
can generate specific anomalies based on textual prompts.
Typically, these anomalies can appear at various locations in
the image. To utilize the generated images for the targeted
anomaly detection task, they must be annotated with anomaly
masks, thus necessitating the model’s ability to control the
location of anomaly generation.

In this stage, we employ ControlNet [12] to fine-tune
the pretrained Stable Diffusion model. ControlNet employs
a binary mask and a textual prompt as conditional inputs:
the mask dictates the location where the anomaly will be
generated, while the textual prompt determines the style of
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Fig. 3. The framework of our method, which consists of two stages: (i) The model takes a text prompt ct, a positional control
mask cm, and Gaussian noise ϵ as inputs, and then produces anomalous features at the designated location after undergoing t
steps of denoising. (ii) The encoder extracts features from normal samples, which are then fused at the feature level with the
generated anomalous features; the decoder subsequently decodes these fused features to produce an anomalous image.

the anomalous features, enabling the production of high-
quality and diverse anomalies. By training on a limited set
of anomaly-mask pairs, we can guide the denoising Unet to
generate anomalies at locations specified by the mask.

While training, during the forward process, given an
anomalous image feature z0, noise is progressively added to
it to obtain the noise feature zt, where t is the number of times
the noise is added. In the backward process, the weights of
the Denoising U-Net are frozen. Given a series of conditions,
including the time step t, the text prompt ct, and the anomaly
location mask cm, the ControlNet [12] is trained to enable the
entire model ϵθ to predict the noise added to zt with

L = Ez0,t,ct,cm,ϵ∼N (0,1)

[
∥ϵ− ϵθ(zt, t, ct, cm)∥22

]
(1)

where L is the overall learning objective of the entire diffu-
sion model.

3.2. Anomaly Feature Fusion

It is worth noting that the features generated in the first stage
have a significant disparity from the features of normal sam-
ples, making them unsuitable for direct anomaly detection.
To address this issue, we employ Anomaly Feature Fusion to
integrate the generated anomalous features into the features
of normal samples, thereby obtaining augmented anomalous
samples. The mathematical formulation is as follows:

zi = ε(ir) (2)

zg = ϵθ(ϵ, t, ct, cm), ϵ ∼ N (0, 1) (3)

zf = zg · cm + zi · (1− cm) (4)

ig = D(zf ) (5)

where ir represents the reference normal image, ε and D de-
note the encoder and decoder, zi denotes the features of the
normal image, zg signifies the generated anomalous features,
ϵθ stands for the denoising model, cm stands for the condi-
tional mask, ct represents the textual prompt, zf indicates the
fused features, and ig designates the final generated image.

4. EXPERIMENTS

We trained our CAGen diffusion model on the MVTec-AD
[17] dataset. Specifically, we fine-tuned the pretrained Stable
Diffusion [11] v1.5 model using ControlNet [12]. For the
training process, we randomly selected three images from
each type of defect within each category. The textual prompts
for each image were simply set to “{defect type} {category}”,
e.g., “broken large bottle”. The training was conducted over
a total of 1000 epochs. For the images requiring augmen-
tation, we first obtained the mask of the target object to be
augmented. This mask was then element-wise multiplied
with a randomly generated Perlin noise mask to produce the
final anomaly location mask. The image to be augmented,
the anomaly location mask, and the corresponding textual
anomaly prompt were then fed into CAGen to produce the
final anomalous image.
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Fig. 4. Visualization results of t-SNE for the normal samples, anomalous samples, samples generated by the Cutpaste [2],
samples generated by the DRAEM [3], and samples generated by our method.

Table 1. Anomaly localization results with AUROC / AP
metric on MVTec-AD [17]. The results highlighted in bold
represent the best performance, while those underlined indi-
cate an improvement compared to the DRAEM [3] method.

Category Cutpaste DRAEM Ours

O
bj

ec
t

bottle 97.6 / – 99.1 / 86.5 99.2 / 89.8
cable 90.0 / – 94.7 / 52.4 95.1 / 63.0

capsule 97.4 / – 94.3 / 49.4 95.6 / 49.4
hazelnut 97.3 / – 99.7 / 92.9 99.8 / 95.9
metal nut 93.1 / – 99.5 / 96.3 99.5 / 96.1

pill 95.7 / – 97.6 / 48.5 98.0 / 51.4
screw 96.7 / – 97.6 / 58.2 99.4 / 64.7

toothbrush 98.1 / – 98.1 / 44.7 98.5 / 61.9
transistor 93.0 / – 90.9 / 50.7 91.5 / 45.7

zipper 99.3 / – 98.8 / 81.5 99.0 / 81.8

Te
xt

ur
e

carpet 98.3 / – 95.5 / 53.5 95.9 / 55.9
grid 97.5 / – 99.7 / 65.7 99.6 / 76.1

leather 99.5 / – 98.6 / 75.3 99.1 / 71.4
tile 90.5 / – 99.2 / 92.3 99.4 / 95.8

wood 95.5 / – 96.4 / 77.7 96.1 / 74.8
mean 96.0 / – 97.3 / 68.4 97.7 / 71.5

4.1. Improvement on Anomaly Detection

We followed the setup of the anomaly detection process of
DRAEM [3] and replaced 30% of the training set with anoma-
lous images generated by CAGen. Although we trained CA-
Gen using a small portion of the test set, the model did not
directly encounter real anomalies during the anomaly detec-
tion phase. Furthermore, after removing the images used
for CAGen training, we achieved an average AUROC/AP of
97.7/71.5 on MVTec-AD [17], which is essentially consistent
with the full test set. Therefore, the scores we report are all
based on the complete test dataset. As shown in Table 1, we
achieved a 0.4/3.1 increase in the AUROC/AP metric based
on the foundation of DRAEM on the MVTec-AD dataset. As
demonstrated in Table 2, we achieved a 2.9/6.0 increase in

Table 2. Anomaly localization results with AUROC metric
and AP metric on BTAD [18].

category DRAEM Ours
01 91.8 / 18.8 92.7 / 19.8
02 77.9 / 31.8 85.5 / 45.6
03 95.1 / 10.4 95.4 / 13.5

mean 88.3 / 20.3 91.2 / 26.3

the AUROC/AP metric on BTAD [18].

4.2. Visualizing the Embeddings of Synthetic Images

In this experiment we utilize t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [19] which is commonly used for
visualizing high-dimensional data. We trained a binary clas-
sifier on normal images and real anomalous images by fine-
tuning a pretrained ResNet-18 [20]. Subsequently, we ex-
tracted the features from this classifier and applied t-SNE
visualization on normal images, real anomalous images,
Cutpaste synthetic anomalous images, DRAEM synthetic
anomalous images, and anomalous images generated by our
method. As illustrated in Fig. 4, the anomalies generated
by our method are closer to real anomalies, which is more
conducive to anomaly detection.

5. CONCLUSION

In this paper, we introduce CAGen, an innovative data aug-
mentation methodology for anomaly detection. Our approach
is built upon the latest diffusion model, boasting superior
generation capabilities and controllability, and allowing for
the production of diverse anomalous patterns. Furthermore,
we introduce the Anomaly Feature Fusion technique to blend
anomalous features with normal images. Comprehensive
experiments validate the effectiveness of our method.
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