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ABSTRACT

Noisy labels modeling makes a convolutional neural net-
work (CNN) more robust for the image classification prob-
lem. However, current noisy labels modeling methods usually
require an expectation-maximization (EM) based procedure
to optimize the parameters, which is computationally expen-
sive. In this paper, we utilize a fast annealing training method
to speed up the CNN training in every M-step. Since the train-
ing is repeated executed along the entire EM optimization
path and obtain many local minimal CNN models from every
training cycle, we name it as the Cyclic Annealing Training
(CAT) approach. In addition to reducing the training time,
CAT can further bagging all the local minimal CNN models
at the test time to improve the performance of classification.
We evaluate the proposed method on several image classifi-
cation datasets with different noisy labels patterns, and the
results show that our CAT approach outperforms state-of-the-
art noisy labels modeling methods.

Index Terms— Image Classification, Noisy Labels,
Cyclic Annealing Training, EM algorithm, Bagging CNNs.

1. INTRODUCTION

Convolutional neural network (CNN) has been successfully
used in many supervised learning tasks, such as image clas-
sification or object recognition. In general, the labels used to
train models are assumed to be accurate. However, in prac-
tice, labeling image dataset by hand is a subjective task and
easily induce noise to vary degrees, thus leading to deteriorat-
ing the performance [1, 2]. To improve the robustness of CNN
models, there exist many practicable noise modeling methods
[3, 4, 5, 6] to tackle the noise in the feature. Beyond the noise
in feature, it is common that noise in label (label noise) [7]
and still remains to be addressed [8].

To cope with the label noise, a series of noise modeling
approaches [9, 10, 11, 12] have been proposed based on the
expectation-maximization (EM) framework, which assumes
that the unknown true label could be regarded as a hidden
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Fig. 1: Training DenseNet-40 on CIFAR-10 using standard
learning rate schedule (blue) and cyclic annealing training
(red). To tackle the noisy labels problem, current EM based
approaches require an entire training in every M-step. Fast
annealing the learning rate in every M-step cycle is able to
speed up the convergence and obtain many intermediate mod-
els (denoted by the dotted red lines). At the test time, we can
further bagging these models to improve the performance.

random variable. In these EM-based approaches, every E-
step estimates the true label, while every M-step updates the
model parameters. These EM-based iterative methods can
render CNN models robust to label noise, however, the re-
peated training in each M-steps is very expensive, especially
when the training of modern deep CNN already requires many
computing resource.

To reduce the training cost, one recent work, named by
Noise Adaption Layer (NAL) [13], uses an additional plugged
noise layer to learn the latent pattern of noisy labels and it op-
timizes all parameters within a standard training procedure
of neural networks. However, due to the degrees of freedom
in noise layer, NAL approach suffers the problem of conver-
gence, and the performance is sensitive to the initialization
of parameters [13]: only a careful initialization of parameters
can successful converge to a robust model and extra training
cost of this initialization is still unavoidable.

In this paper, we propose a novel robust CNN model by



embedding cyclic annealing training (CAT) into EM frame-
work to speed up the convergence. To be specific, we train
the CNN classifier with a fast cosine annealing learning rate
schedule in every M-step cycle and also alternately update the
noise pattern in every E-step.

On the one hand, CAT reduces the training cost and does
not have any limitation for the parameters initialization. The
comparison of different training schedules is illustrated in
Figure 1, from which we find that CAT significantly speed
up the convergence of CNN. On the other hand, CAT enables
the usage of ensemble [14] strategy. It is known that bagging
[15] is more robust than boosting [16] in the presence of noisy
labels [17, 18]. As CAT learns the noise pattern from every
E-step, the latest noise pattern can be used as a prior con-
dition for every E-step CNN models. Thus, inspired by the
Snapshot Ensemble [19], at the test time, we aggregate many
intermediate models to further improve the performance.

We evaluate the performance and efficacy of our CAT ap-
proach on image classification with different label noise pat-
terns. In contrast to current EM based approaches [9, 10, 11,
12], when a dataset has a given noisy pattern, CAT is signif-
icantly faster to learn it and has a better classification perfor-
mance. Compared with the state-of-art NAL approach [13],
CAT is able to train a better classifier in all of the noise levels.

It is worthwhile to highlight two main contributions of our
proposed CAT approach:

• Existing EM based noisy labels modeling approaches
require too many training time. We utilize a fast anneal-
ing training method to speed up the learning progress,
without any limitation for the parameters initialization.

• As we can obtain many intermediate models from all of
the M-step cycles, we bagging all of them to further im-
prove the robustness when the noise pattern is obtained
from all of the E-steps.

2. CYCLIC ANNEALING TRAINING

2.1. Noisy Labels Modelling

To solve the noisy labels problem, it is natural to consider the
noise from a statistical point of view [8]. Figure 2 shows two
possible statistical models of the label noise pattern.

For reasons of brevity, here we first consider the left sit-
uation and the right situation will be discussed in our exper-
iments, where the noisy label z only depends on true label y
with a transfer probability Θ(θij = p(z = j|y = i)). Then
a robust CNN classifier p(y = i|x;W ) can be trained on a
n samples noisy labels dataset D = (xi, zi), i = 1, ..., n by
different training approaches. Specifically, W is the network
parameters, the dataset has n samples, x is the feature of sam-
ple, and i is one of k class index.

Figure 3 illustrates a high-level view of the noisy labels
model architecture: the noise can be modeled by different
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Fig. 2: Left: noisy label z only depends on true label y.
Right: z depends on both of true label y and feature x.
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Fig. 3: A typical label noise modeling framework.

noise model layer [10, 13] inserted between the CNN softmax
layer and the cross-entropy cost layer. The log likelihood of
model parameters will be:

L(W,Θ) =

n∑
t=1

log(

k∑
i=1

p(zt|yt = i; Θ)p(yt = i|xt;W )).

(1)
Then, as y is a hidden random variable, it is natural

to utilize an EM based method [12] to find the maximum-
likelihood parameters W and Θ.

2.1.1. EM Approach

In every E-step, all parameters are fixed and hidden true label
y can be estimated as:

qti = p(yt = i|xt, zt)∝p(yt = i|xt;W )p(zt|yt = i; Θ),
(2)

where qti is a soft estimates of sample xt belonging to true
label i = 1, ..., k.

In every following M-step, at first the noise parameter Θ
can be updated by qti in a closed-form function:

Θij =

∑
tqti1{zt=j}∑

tqti
. (3)

Then the CNN parameters W will be trained with an opti-
mization algorithm such as SGD. In this way, the log likeli-
hood (1) will have a soft version:

arg max
W

L(W ) =

n∑
t=1

k∑
i=1

qtilogp(yt = i|xt,W ). (4)

Once the iteration conditions are met, we will have the noise
pattern Θ and the CNN parameters W .

2.1.2. Noise Adaption Layer Approach

Recently, a noise adaption layer approach [13] is proposed
to optimize the log-likelihood function (1) directly within the
procedure of CNN training.



Denote the parameter of last fully connected layer as w
and b, the other modules of CNN as function h = h(x). Then
the softmax prediction loss of true label y is:

p(y = i|x;h,w, b) =
exp(w>i h(x) + bi)∑k
l=1exp(w

>
l h(x) + bl)

. (5)

The label noise is modeled by an additional noise adaptation
softmax layer between the original classification softmax and
cross-entropy cost layer. This noise adaptation softmax layer
describes the transfer probability as θij =

exp(qij)∑
lexp(qil)

. As this
noise layer is modelled with a differentiable layer parameter
qij , all of the model parameters can be optimized within a
typical network training (e.g. SGD), as below:

arg max
h,w,b,q

L(h,w, b, q) =

n∑
t=1

log(

k∑
i=1

p(zt|yt = i, xt; q)p(yt = i|xt;h,w, b)). (6)

2.2. Cyclic Annealing Learning Rate

The noise adaptation layer approach does not need any iter-
ative CNN training, but it gives rise to a complex parameter
initialization. Because only a very careful initialization can
make a successful converge, too much extra training costs of
the initialization procedure are still unavoidable. To directly
reduce the training cost without raising any other problems,
our CAT approach benefits from the cyclic annealing learn-
ing rate [20] and is able to speed up the learning of every
M-step.

The state-of-art CNN architectures for image classifica-
tion such as ResNet [21] and DenseNet [22] usually have
millions of parameters. A study [23] demonstrates that the
more parameters, the more possible local minima could be
visited in the training phase. The cyclic annealing learning
rate method aims to generate many local optima CNN models
from a single training process. Specifically, it abruptly raises
the learning rate α and then quickly decreases it with a cosine
function:

α(t) =
α0

2
(cos(

πmod(t− 1, dT/Ce)
dT/Ce

) + 1), (7)

where t is current epoch number, T is the total epoch number,
α0 is the initial learning rate, and the total training epochs are
divided to equal C cycles.

While the training cost for each current M-step is an entire
CNN training, we can align every annealing learning rate cy-
cle to an M-step and then use the obtained local minimal CNN
model to update the following E-step. By this way, our CAT
approach can directly achieve a C times faster convergence
than current EM based approaches. In order to further accel-
erate the convergence, we can also faster update the learning
rate at every iteration rather than at each epoch [20].

2.3. Bagging CNNs

We can obtain many local minima CNN models from differ-
ent M-steps. As those models usually make different mis-
takes, bagging all of them is able to significantly improve the
classification performance [19].

In the presence of the noisy labels, our CAT approach is
able to iteratively learn a noise pattern Θ through many E-
steps. At the test time, we can use this noise pattern to divide
the noise layer from local minimal CNN models. In this way,
the other part of CNN will become a robust classifier, which
predicts the true label y but not the observed noisy label z.

2.4. Cyclic Annealing Training

For the noisy labels problem, the details of our proposed CAT
approach is given in Algorithm 1.

Algorithm 1 Cyclic Annealing Training on Noisy Labels

1: Given n samples training data X(x1, ..., xn) with noisy
label Z(z1, ..., zn), the true label Y (y1, ..., yn) are un-
known. The transfer probability between true label and
noisy label is denoted as Θ(θij = p(z = j|y = i)).

2: We first generate a random matrix Θ̂0 to be the initializa-
tion of the noise pattern.

3: Then we repeatedly do C times the following:

(1) For every training cycle c ranges from 1 to C, ini-
tiate the learning rate with a constant value α0.

(2) With the learning rate annealing from α0 to 0

as function α(t) = α0

2 (cos(π·mod(t−1,T )
T ) + 1),

where t is current iteration number, train the CNN
p(y|x;W c) with a fixed follow-up noise layer (lin-
ear or softmax) p(z|y; Θ̂c−1) for total T iterations.

(3) Update the learned noise pattern Θ̂c with the
closed-form function (3).

4: Once all of the training finished, drop the noise layer
according to the final Θ̂C . The remaining CNN pa-
rameters W c will be used to predict the true labels, as
f̂c = p(y|x;W c), c = 1, ..., C.

5: For any prediction sample 〈x0, z0〉 with a hidden true la-
bel y0, the aggregating output f̂ of bagging CNNs is the
simple averaging f̂AVG(x0) = 1

C

∑C
c=1f̂c(x0).

6: The prediction error is given by counting the proportion
of prediction mistakes f̂(x0) 6=y0 among the test dataset.

Compared to the state-of-art noisy labels modeling ap-
proaches [10, 11, 13], the proposed CAT approach is not only
faster, but also more accurate and without any limitation for
the parameters initialization.



3. EXPERIMENTS

In the following experiments, we compare our CAT approach
with other state-of-art approaches [10, 11, 13] in three im-
age classification datasets (e.g. MNIST [24], CIFAR-10 and
CIFAR-100 [25]), in the presence of noisy labels.

3.1. Settings

Figure 2 illustrates two possible label noise patterns [8]. Dif-
ferent to other approaches, we use the same CAT approach
(Algorithm 1) to tackle both of the two noise patterns.

Several recently proposed noisy labels modelling methods
are used to be the baselines: (1) Original CNN: The CNN is
trained in the normal way, without any noisy labels modeling
methods; (2) Hard Bootstrap EM [11]: The CNN is itera-
tively trained on a hard convex combination of the noisy label
z and currently predicts label y, which is a state-of-art EM
nosiy modelling approach; (3) Simple NAL [13]: The CNN
is trained with a noise adaptation layer, in which the noisy la-
bel z depends on only the true label y; and (4) Complex NAL
[13]: The CNN is trained with a noise adaptation layer, in
which the noisy label z is depending on feature x and true la-
bel y. We also include a method without bagging: in step 4 of
Algorithm 1, we directly predict the true labels with a single
CNN f̂C but not the bagging CNNs f̂AVG.

3.2. Effective of CAT

We first generate a noisy MNIST dataset with label flipping
operation, where a label is erroneously given another label
within the dataset. Specifically, we randomly flip the labels
as a noise pattern [7,9,0,4,2,1,3,5,6,8], which means digital
0 will be labeled by 7, 1 by 9, and so on. Then our CAT
approach is applied on the noisy MNIST dataset to train an
8-layer CNN (Conv-ReLU-Max-Conv-ReLU-Max-FC-FC)
[13]. When up to 46 percent of the labels are flipped, the
simple NAL approach can achieve a 99.68% classification
accuracy, while our CAT approach can still achieve a 99.77%
classification accuracy. As Figure 4 illustrated, the transfer
probability Θ̂ acquired by CAT is more consistent to the prior
noise pattern. Therefore, our CAT approach is still effective
when the noise level is high.

3.3. Comparison of Efficiency

To show the efficiency, we adopt different approaches to train
a DenseNet-40 [22] on the noisy CIFAR-10 dataset, which
has 10% randomly flipped labels. The result is illustrated in
Figure 1. As CAT needs less time to converge, it is more
effective than other EM based approaches.
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Fig. 4: 46% noisy labels on MNIST with noise pattern
[7,9,0,4,2,1,3,5,6,8]. The acquired transfer probability Θ̂ of
CAT and Simple NAL are visualized.
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Fig. 5: Our CAT approach achieve a state-of-art classification
accuracy on CIFAR-100 in the presence of noisy labels with
different noise fraction.

3.4. Comparison of Performance

We also evaluate how the different noise fraction influences
our proposed CAT approach. Figure 5 depicts that the test
accuracy is a monotone decreasing function of the noise frac-
tions generally, with the fraction stepping from 0.3 to 0.5 with
the step value 0.02. It shows that our approach is more robust
than other state-of-art noisy labels modeling approaches.

4. CONCLUSION

In this paper, we propose a Cyclic Annealing Training (CAT)
approach to train the CNN for image classification in the pres-
ence of noisy labels. While current EM based noisy labels
modeling approaches require too much time costs, CAT is
able to directly reduce the training cost in every M-step, with-
out bringing in a complex parameter initialization. At the test
time, we bagging all of the intermediate models, which comes
from many M-step cycles. The experiments show that these
proposed strategies make the CNN model more robust and
effective.
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