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ABSTRACT

The falling accident is one of the largest threats to human health,
which leads to broken bones, head injury, or even death. Therefore,
automatic human fall recognition is vital for the Activities of Daily
Living (ADL). In this paper, we try to define multi-level computer
vision tasks for the visually observed fall recognition problem and
study the methods and pipeline. We make frame-level labels for the
fall action on several ADL datasets to test the methods and support
the analysis. While current deep-learning fall recognition meth-
ods usually work on the sequence-level input, we propose a novel
Dynamic Pose Motion (DPM) representation to go a step further,
which can be captured by a flexible motion extraction module. Be-
sides, a sequence-level fall recognition pipeline is proposed, which
has an explicit two-branch structure for the appearance and motion
feature, and has canonical LSTM to make temporal modeling and
fall prediction. Finally, while current research only makes a binary
classification on the fall and ADL, we further study how to detect
the start time and the end time of a fall action in a video-level task.
We conduct analysis experiments and ablation studies on both the
simulated and real-life fall datasets. The relabelled datasets and
extensive experiments form a new baseline on the recognition of
falls and ADL.
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1 INTRODUCTION

With the aging of the population, the health and life problem of the
elders becomes more and more critical. According to the statistics
[28], the accidental fall is believed to be the leading cause of serious
injuries for the elderly. Moreover, fall is the leading cause of acci-
dental death in seniors aged 65 and above [4]. Therefore, there is a
great need to develop the methods to detect the fall from activities
of daily living (ADL) and timely raise the alarm. To date, there exists
a lot of fall detection methods [18]. Many of them are relying on
additional sensors [16], such as multiple RGB cameras [10], depth
sensors [15], accelerometers or smart watches [16]. Compared to
the wearable fall detection methods, the vision-based method has a
significant advantage because it does not require the seniors to wear
specific equipment. The widespread existence of indoor surveil-
lance systems also facilitates the application of vision-based human
fall recognition. This paper try to explore the feasible vision-based
fall detection methods, which works on the recorded videos or the
real-time surveillance video stream.

To detect a fall from the RGB camera, many previous methods
[18] try to leverage the shape deformation and motion feature of the
human body. However, ADL might have a similar body movement
to the motion feature of fall action [4]. For example, sitting on knees,
bending forwards, laying down and sleep in the low-level visual
feature looks like the accidental fall, but current shape deformation
based method [20] is unable to distinguish the similar motion pat-
terns. Recently, a deep learning based fall detection method [13]
utilizes the dynamic image [5] and a temporal modeling pipeline
to make the fall detection on the sequence-level input. However,
the dynamic image only focuses on the motion information and
disregards the pose appearance, which is a limited feature represen-
tation. Besides, the temporal modeling procedure in [13] is highly
dependent on an elaborate decomposition of the fall action. It de-
fines a fall action with four smaller atomic action units (such as
standing, falling, fallen, and not-move) and requires the accordingly
frame-level labels. As the boundary between adjacent atomic units
(e.g., falling and fallen) is quite vague, making temporal modeling
with them is also limited.

To address these limitations, in this paper, we propose to make
the fall recognition on multiple levels, as shown in Figure 1. We
make these multi-level task descriptions similar to canonical multi-
level human action recognition methods, such as the short-term
[25], mid-term [27], and long-term [26] modeling methods. The
short-term modeling usually takes around 15 frames as input, while
the mid-term takes around 10 seconds as input. However, due to
the fall action is quite fast than the other ADL, our multi-level tasks
process more fine-grained inputs than the other human action
recognition methods.



Frame Level Fall Detection Task: Input (Every Frame), Binary Output (fall or non-fall), Metrics (Percision, Recall, and F1 Score).
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Sequence Level Fall Detection Task: Input (Sequence), Binary Output (fall or non-fall), Metrics (Percision, Recall, and F1 Score).

Video Level Fall Detection Task: Input (untrimmed video), Output (start / end index of fall action), Metrics (IOU on frame index).

Figure 1: We define multi-level computer vision tasks on the visually observed fall action. To better evaluate the final detection
results, we calculate the precision, recall, F1 score, and IOU value to form the performance baseline.

After clarifying the different objectives of the multi-level fall
detection tasks, we also benefit from addressing them. If the thresh-
old value of the fall judgment is low, we will have a high recall
rate on the fall frames. Therefore, the methods for Frame Level Fall
Detection (FLFD) are suitable for mining the potential fall action.
When the input is in sequence-level, we try to find a more effective
fall detection algorithm pipeline to be comparable with previous
practices. Because an untrimmed video is similar to a real-time
stream, to some extent, an application of Video Level Fall Detection
(VLFD) is to explore how to apply the fall detection method into a
surveillance system.

As a most powerful deep learning method, the convolutional
neural network (CNN) has been widely used in the field of human
action recognition (HAR) and fall recognition problem [30]. At
present, a typical video-processing algorithm pipeline uses CNN to
extract the visual features [19] and adopts the spatial-temporal two-
stream [21], 3D convolution [24], or the CNN-LSTM [12] model
architectures. Technically, in addition to proposing a new fall detec-
tion pipeline, finding a better motion feature [13] or pose feature
[14] is very important for the fall detection. A recent study [8]
shows that the combination of 2D pose heatmaps and its motion
is a more informative action feature. Based on this observation,
in this paper, we propose a more powerful feature to characterize
the fall action, which is the dynamic pose motion (DPM). We will
introduce the theory, advantages, and the usage of DPM in the
Sequence Level Fall Detection (SLFD) task.

Although previous research develop a lot of vision-based human
fall detection algorithms [13] [14] [22], there is a gap between
the real-life and the simulated human fall action [4] in the visual
presentation. To better evaluate the proposed fall detection methods
for different scenarios, we collect five public available fall datasets
and divide them into two categories: the simulated and the real-
life fall videos. There are 483 laboratory simulated videos for the
standard evaluation and 379 real-life accidental fall videos for the
real application test. We defined different evaluation metrics for
multi-level tasks. The algorithm described in [13] is regarded as the
compared benchmark. To show the performance improvement of
pose and motion information, we also conduct the ablation studies.

The main contributions of this paper can be summarized as
follows:

o We make a multi-level task definition for the fall recognition
problem. In this way, we can focus on different difficulties
and address the problem from different perspectives.

o For the widely concerned SLFD task, we propose a novel
dynamic pose motion (DPM) feature to represent the human
fall action. From the ablation study, we show the DPM is the
most suitable spatial and temporal feature representation for
the fall action at present.

o We carefully relabel five representative fall detection datasets
in frame-level and provide baselines on the simulated or real-
life datasets. The ablation study on different human pose
and motion features are also conducted.



2 RELATED WORK
2.1 Action Modeling Methods in ADL

There exists many action recognition/classification methods in the
ADL scenario. The short-term modeling method ARTNet [25] ex-
tracts the appearance and motion from every video frames. It has
a canonical two-stream architecture, and requires to extract the
optical flow in advance for every frame, which means the motion
branch limited the detecting speed. If the motion branch can speed
up, the ARTNet method could be powerful for frame-level fall de-
tection. The temporal segment network (TSN) [27] processes the
middle-range feature of action, and it is a sequence-level recogni-
tion framework based on a simple segment sampling strategies and
consensus aggregation. In general, TSN is a powerful and flexible
framework for action modeling. However, its temporal convolu-
tion branch takes the stacking warped optical field as the input,
which is insufficient for the motion information of human fall
[13]. The UntrimmedNet [26] makes the weakly supervised action
recognition on the video-level. It is an end-to-end architecture and
combines the feature extraction, sequence selection, and classifica-
tion modules. Due to the advantage of end-to-end and video-label
prediction, the whole pipeline is convenient for action recognition
or detection.

There exist the short-term, middle-term, and long-term mod-
eling models for the action recognition problem, but there is no
time-aware distinction from the task definition of the fall recogni-
tion from ADL. Recent research [4] provides a High Quality Fall
Simulation (HQFS) dataset. It has a long recording session on the
performance of the data acquisition system, instead of recording
only the short segments. By this way, the dataset envisions a better
balance between the fall action and the ADL and can be a more
reliable benchmark. In this paper, we do not provide a new dataset,
but we propose the multi-level definitions for fall detection. Ac-
cordingly, we also offer the relevant new labels for several widely
used fall datasets in frame-level, sequence-level, and video-level.

2.2 Vision-based Fall Recognition

A traditional recognition system requires additional wearable sen-
sors to detect a human fall action [16]. However, recent years have
seen rapid progress in computer vision. Thus there are more and
more researches concerning the vision-based fall detection algo-
rithms [13]. The vision-based fall detection system usually utilizes a
surveillance camera to capture a video stream and makes the SLFD
task.

A typical technique [9] detects the person in the video sequence
firstly, and then compute three points that represent different re-
gions of a human body, namely the head, body, and legs from the
detected foreground. This method is simple, but it can only recog-
nize one person, and the performance suffered in the presence of
other objects, such as walking sticks.

Since 3D camera provides depth information, the depth camera
(e.g., the Microsoft Kinect sensor) is also used for video captur-
ing and fall detection. [23] uses the Kinect for falling detection.
Although the 3D cameras can make a more robust detection, the
visual range of depth camera is usually shorter than the 2D camera.
For example, Kinect can only detect human motion from 0.4 meters
to 3 meters, while most of the 2D RGB cameras detect farther than

3 meters. [3] provides a multi-view fall dataset for developing the
multi-camera fall detection algorithm. The multi-camera fall detec-
tion system can exploit the enriched visual information for action
description, but it has a high cost, and it is limited for the indoor
scenario. In this paper, we propose a single 2D RGB camera-based
fall recognition algorithm, and it is expansible to the other existing
fall detection systems.

2.3 Pose Estimator

Intuitively, the human pose is a very discriminate cue for human
action recognition. Recent trend and several approaches [6][1][29]
propose to use a CNN to extract the human pose from 2D RGB
video. The OpenPose [6] is the first real-time multi-person system to
detect the joint (18 keypoints from OpenPose COCO) of the human
body from a video. The core algorithm of OpenPose has a two-
stage greedy bottom-up parsing. At first, it can efficiently find the
heatmap of joint keypoints, then the part affinity fields (PAFs) help
to connect body parts with individuals. To make the fall detection,
we only need the first stage of OpenPose to detect the human body.
The PoseFlow [29] has a multi-stage pipeline by separating the pose
detection task into body detection, single person pose estimation,
and post-processing operations. Using better human detector and
single person pose estimator network, the PoseFlow has a state-
of-the-art performance in several benchmark pose datasets. The
DensePose [1] maps all human pixels of 2D RGB images to a 3D
surface-based model of the body. Because the DensePose almost
provides a very accurate rendering for the human surface, it refers
to a new task called the dense human pose estimation. It has a
fully-convolutional dense pose regression and determines which
surface part the pixels belonging. By providing a pixel-level mask
for the human pose feature, it is quite robust for the real-life fall
detection scenario.

The pose representation provides a most directly feature for the
fall recognition from ADL [11][14], but it still has several limita-
tions: (1) the time-consumption of pose tracking across the video
is quite high, (2) the joint feature maps are not always correct, (3)
current pose estimators are not robust enough to the occlusion
and truncation. To avoid these defections, we propose a sequence
processing module to utilize the motion pose information [8]. We
implement it for the SLFD task and achieve the state-of-the-art
performance.

2.4 Pose Motion Representation

To date, the spatiotemporal action recognition usually has two
branches (or two-streams) [21]. A spatial branch is typically used to
extract the appearance information from the RGB frames, while the
temporal branch is applied to characterize the motion information
using the optical flow. In many human action recognition tasks,
the interested area is the human body but not the global. Optical
flow for the whole video will bring in some noisy information,
such as the irrelevant background object movement. To avoid this
problem, another approach [13] simultaneously describes both of
the appearance and temporal information in a serial pipeline, which
converts a short video clip to a dynamic image [5]. Different from
the optical flow, the dynamic image employs a rank learning method



to combine the frames of a video into a single image to enable the
action analysis.

In addition to extract the dynamic image [5] feature for human
action, there exists a PoTion [8] representation, which relies on
the human pose and is also complementary to the two-stream
approach. Furthermore, both of the dynamic image and PoTion
can capture long-term dependencies without any limitation on the
temporal receptive field. In practice, we approximate the dynamic
image by weighting frames with the time index. We obtain the
PoTion by aggregating all frames’ pose heatmaps into a colorized
heatmap. Due to all the calculation are the simply weighting, these
two motion representations are easy to implement with particular
pooling layers. The low time-consumption of pooling makes the
dynamic image scalable for quick fall action [5]. In this paper, we
extend the PoTion representation and propose the novel Dynamic
Pose Motion (DPM) feature for multi-level fall recognition.

3 MULTI-LEVEL FALL RECOGNITION

In this section, we first describe the multi-level fall recognition
tasks. Then we introduce the novel Dynamic Pose Motion (DPM)
feature and design three algorithm pipelines for FLFD, SLFD, and
VLFD tasks, respectively. Notably, as we have labeled the datasets
on the frame-level, the VLFD task can benefit from the backbone
algorithm of FLFD and SLFD.

3.1 Overview for Multi-level Tasks

According to the different task purpose, technically, we define the
fall recognition problem from the frame-level, sequence-level and
video-level. The detailed differences are listed on the Table 1.

The frame-level fall detection (FLFD) task takes the single
frame as the input and judges whether there exists a person falls
in this frame. To solve this problem, we need to preprocess the
dataset and give every frame a fall or non-fall label. The adopted
detection method should judge the fall action within the single
frame and do not depend on other frames. How to extract a better
body appearance feature from the still image is essential for the
FLFD. To improve the performance of a FLFD method, we can focus
on finding better pose representations.

The sequence-level fall detection (SLFD) task takes a fixed se-
quence of frames (e.g., 60! frames) as the input and judges whether
this sequence contains a complete fall action. Recently, a typical
approach [13] try to extract the dynamic image [5] as a motion
feature of the input; and classify the feature from four atomic ac-
tion units: standing, falling, fallen, no-move. After that, it makes
a sequence learning to make the final decision on fall or non-fall.
To better do the SLFD, we need to extract a better motion feature
and design a better algorithm pipeline. In this paper, we propose a
novel DPM feature and show the effectiveness of the CNN-LSTM
[12] pipeline.

The video-level fall detection (VLFD) task takes the untrimmed
video as the input and judges whether the people in this video has a
fall action. Different from the SLFD, the VLFD requires a temporal
processing strategy to localize the fall moments [2]. Therefore, we
need to pre-process the input video and find all possible fall snip-
pets for doing SLFD. In this paper, we utilize sliding window method

160 is an empirical statistic value and calculated from 5 public available datasets.

Table 1: Multi-level fall recognition tasks.

Task Objective Feature Method
extract a better still | body shape, binary
FLFD )
appearance feature pose, etc. classifier
SLED design better motion | DI, PoTion, cnn-lstm,
feature and pipeline | DPM, etc. | two-stream
VLED temporal processing | DI, PoTion, | long-term
finds the fall snippet | DPM, etc. modeling

and shot-based sampling method for the temporal processing. As an
untrimmed video is very similar to a real-time stream, it is potential
to transfer the VLFD method for a surveillance system.

With the multi-level task definitions, we can avoid some am-
biguous cases. For example, in the FLFD task, it is quite hard to
distinguish lay down, sleep, and fall from the still frame. But we
can better solve it, under the SLFD or VLFD task. The fake fall and
stagger are the hard cases in the SLFD task, but we can also better
discriminate them with the VLFD setting. Although most of the
simulated fall cases could be solved in the VLFD task, making fall
recognition in the wild is also a hard problem. In this paper, we
establish the compared baselines with 379 real-life videos with a
typical method [13] and our proposed method.

3.2 The Dynamic Pose Motion Representation

We will introduce a novel pose motion representation here, it is
named as Dynamic Pose Motion (DPM) and is closely related to the
dynamic image [5] and the PoTion [8] representation.

3.2.1 Dynamic Image. The dynamic image is an efficient method to
present the motion features of a sequence of frames to a still image.
The basic idea of dynamic image is ranking the feature (such as
the human pose heatmap) of frames (¢, ..., Y1) of a T-length video.
Define the time average of ; is V; = % Zi,:l Y;. Then a ranking
score associated with time ¢ is represented by S(¢t|d) = (d, V;).
Due to the temporal dynamic information of video, we restrict
the ranking score to a positive value, where V{q,t} s.t. g > t =
S(gld) > S(t|d). Then we can solve d from the following convex
optimization problem:

&= p..e. ) = g min(L(d) + 2y )
2
L(d) = =T ;‘t max{0, 1 — S(q|d) + S(z|d)}. @

This convex optimization problem converts a T-length video frames
to a optimized frame-sized vector d*. This optimization process in
[5] is named with rank pooling. When the optimized frame d* is
visualized as a standard RGB image, it will be called the dynamic
image.

3.2.2 Approximate Dynamic Image. To meet the requirement of
real-time action recognition, a fast approximate dynamic image
algorithm is introduced to speed up the optimization of dynamic
images [5]. Considering the first step of gradient update of the
optimization problem formula (1), we will have d = 0. So the first-
step approximated solution of the dynamic image will be d* =
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The weighted parameter f; in equation (3) is in terms of time ¢, and
Bt = (t—1)—(T—1t) =2t —T — 1. Continue to expand the equation
(3), then we will have:

T T
d* oC Zﬁ[Vt = Z (1[1#[

=1 =1 ©)
ar =2(T—t+1)— (T + 1)(Hr — Hy-1)

where H; = le % is the #-th Harmonic number.

If we regard the a; as a weight coefficient, the approximated
dynamic image d* will be calculated from weighting the original
frames by time axis. In this way, the time-cost will be greatly re-
duced. Due to the approximated calculation can be implemented in
a pooling layer, the dynamic image in the following text refer to
the approximated dynamic image.

3.2.3 PoTion Representation. The PoTion [8] representation re-
lies on the human pose and is complementary to the two-stream
pipeline. At first, it colors the heatmap feature of a joint to obtain
a colorized heatmap. Then the algorithm aggregates the different
joints to generate a heatmap representation for the pose.

Specifically, after the extracting of joint heatmaps from each
frame with OpenPose [6], they will be colorized to a time-dependent
heatmap. The colorized heatmap of joint j for a pixel (x,y) and a
channel ¢ at time t is given by: Cf [x,y,c] =H J.t [x, yloc(t), where
o.(t) is a previously designated weight coefficient for the c-th color
channel. The heatmap H Jt of different positions of dimension HXW
is transformed into an image C][. of dimension HXWXC with the
same spatial resolution but C color channels.

The aggregation of the colorized heatmaps for each joint j is
S; = Zthl Cjt, which depends on the number of frames T. To
obtain an invariant representation, we can normalize each channel
¢ independently by dividing T or }}; o(t) over all pixels. Then the
PoTion representation will be a C-channel image:

Silx,y,cl

Uilx,y,c] = ——————.
ilx, v, c] max, Syl u.c]

(6)

In addition to the PoTion U, there are two more representations
I and N. The intensity image J; is an image with a single channel:

C
Lilxyl = ) Ujlx,y.cl. %)
c=1
Then a normalized PoTion representation is:
Ujlx, y, c]
; = 22 8
Nibeyel = ®

where € = 1 can avoid instabilities in areas with low intensity.

While the pose heatmaps have been directly used as the fall
feature [14], we can further use the PoTion representation to be
the motion feature.

Figure 2: Compare the different pose motion representa-
tions on a sequence of fall frames. From left to right: the
RGB frames, dynamic image, the proposed dynamic pose
motion (DPM), and the normalized partial feature (NPF).

3.24 The Proposed Dynamic Pose Motion. Since the PoTion tempo-
rally aggregates the probability heatmaps with a weight coefficient
and the dynamic image is a weighting operation on the feature maps.
We propose a better pose motion representation by calculating the
dynamic image and the PoTion representation simultaneously. We
call this novel representation as Dynamic Pose Motion (DPM).

Current 2D pose estimator, such as Openpose[6], outputs a
heatmap to indicate the probability of each joint at pixel-level.
Then the colorized pose heatmap (le, e jT) of a T-length video
can be used to calculate D;, which is the DPM of the j-th pose
joint. We can define a rank pooling optimization problem for the
proposed dynamic pose motion:

. . A
D = p(C},....C[) = argmin(L(D;) + 5||1)j||2’) )
D;

where the ranking loss L keeps the same to equation (2).

Then we will still have a first-step gradient approximation 1); o
Zq>t(qu - Vjt) = Zthl [i’,Vjt, where the weight f; = 2t =T -1
and the stacking Vjt =13, Cjt .

Compared to the Dynamic Image, the proposed DPM expend
the obtained pose heatmap ¢ into a colorized heatmaps C. The
specific colorization schemes depend on the color channels number
C and the definitions of o(t). For instance, the o(t) is (};_11, 1— %
with C = 2. In this paper, we use o(t) with C = 3. Compared
to the PoTion representation, the DPM further weighting on the
temporal information for each joint. We can find this difference

from the formula S; = Zthl Cjt of PoTion and the approximated
DPM formula D; = Zthl ,Btht.

We can refer to figure 2 for a visual comparison for different
pose motion features. The normalized partial feature (NPF) is a
combination of the pose heatmap and DPM feature. We first make
the dot product for these two features, on the pixel level. Then we
further normalize the obtained partial feature (similar to equation
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Figure 3: The sequence-level algorithm pipeline (SLAP) for
SLFD task. Technically, we first extract the Pose feature and
the DPM feature from a 2D RGB sequence. Then we train a
CNN-LSTM on the stacked feature for the prediction.

8) on each body part. For a better fall recognition performance, we
recommend using the NPF feature, as illustrated in figure 4.

3.3 Algorithm Pipelines for Multi-level Tasks

In this section, we describe the algorithm pipelines for multi-level
tasks. They are the frame-level algorithm pipeline (FLAP), the
sequence-level algorithm pipeline (SLAP), and the video-level algo-
rithm pipeline (VLAP), respectively.

For the FLFD task, if the input frames are in a fall action, we
desire that the algorithm pipeline output a big probability value p
(bigger than a pre-assigned threshold) and say it fall. In this paper,
we use the pre-trained pose estimators (e.g., Openpose [6], [29]) to
extract the appearance feature, then use a simple binary classifier,
such as a 4-layer MLP, to detect the fall frame.

For the SLFD problem, we first extract the pose and heatmap
feature for every frame of the input sequence. Then, we calculate
the DPM (default with T = 15) representation from the RGB frames
and the pose features. We propose a typical CNN-LSTM structure
to process the stacked feature, which is a concatation of the RGB
frame, the Pose Heatmap, and the DPM feature. The final prediction
result is a probability value p, and it is updated over the time index.
The pipeline is also illustrated in figure 3.

For the VLFD task, we take an untrimmed video as input, and
it might include indoor or outdoor scenes. Therefore we need to
make the fall detection from a lot of the other activities daily living
(ADL). When the datasets do no offer the frame-level fall labels, we
can only adopt a sliding window method for the snippets sampling.
We can not fine-tune the prediction model for the fall sequence
recognition. Fortunately, as figure 4 shows, in our approach, we
can sample human action snippets with the proposed FLFD models
and make the shot-based sampling. To find the start index and the
end index of a fall action, we make the sequential learning with the
proposed SLFD models and aggregate [17] all the outputs for the
adjacent snippets. In detail, we count the fall frame number n on
continuous k frames. Only all the adjacent frames are fall frames
(e.g., n = k), the current frame could be output as a fall frame.
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Figure 4: The video-level algorithm pipeline (VLAP) for
VLFD task. Technically, for every action, we sample the in-
terested snippets from the untrimmed input video. Then we
extract the stacked pose and motion feature (or NPF) for ev-
ery snippet. After that, we use the CNN-LSTM to make an
ensemble for all the sampled snippets. Finally, if there is a
fall action, we output the start index and the end index.

4 EXPERIMENTS

In this section, we show the influence of using different pose mo-
tion features and present the experimental results of the proposed
algorithm pipelines on multi-level fall detection tasks.

4.1 Datasets

We establish the baselines on five public available fall detection
datasets. Table 2 shows the detailed information of these datasets.

Multi-camera Fall Detection (MCFD) [3] is a simulated dataset.
It contains 24 scenarios, and it is recorded with eight video cameras
from a different perspective. There are 88 daily activities (walking,
standing up, lying on the ground, crouching, moving down, moving
up, sitting, lying on a sofa) and fall action in the dataset. The fall
action happens in 22 scenarios, and the other two only contain
confounding actions. We can find the beginning and ending frame
index of the fall actions from a technical report [3].

Le2i [7] is a simulated fall detection dataset. It contains 156
fall videos and 65 ADL (e.g., walking, sitting down, squatting, etc.)
videos. All the videos are simulated by actors and captured from four
scenarios (home, coffee room, office, and lecture room). It should
be noted that this dataset includes some detection challenges, such
as the occlusions, illumination change, fake fall, and so on. Because
the official label is incomplete, we made detailed frame-level labels
for all the videos.

URFD [15] is a simulated fall detection dataset with the RGB-
Depth information. It contains 30 fall videos and 40 ADL videos,
and several Microsoft Kinect sensors record them. We do not use
the depth channel in our experiments. The dataset includes the start
and end time in seconds for the fall action. To train the frame-level
algorithm pipeline, we made a more specific label at the frame-level
for this dataset.

The High Quality Fall Simulation (HQFS) [4] is a new fall
detection dataset from the realistic surveillance video. It contains



Table 2: Five public available fall detection datasets. To sup-
port the needs of algorithm training and testing, we made
detailed labels for these datasets, as described in section 4.1.

Dataset Name | Video Type and Number
MCFD [3] 176 Fall + 16 ADL
Le2i [7] 156 Fall + 65 ADL
URFD [15] 30 Fall + 40 ADL
HOFS [4] 274 Fall + 17 ADL
YTBF [13] 88 Fall + 0 ADL

Table 3: Compare pose motion feature on the Le2i dataset.

Feature | Task | Precision | Recall | F1 score
OpenPose FLED 0.9487 0.9427 0.9457
PoseFlow 0.9615 0.9615 0.9615

DI 0.7346 0.7625 0.7483
PoTion SLFD 0.6961 0.7789 0.7352
DPM 0.7521 0.8014 0.7760
NPF 0.7939 0.8397 0.8161

274 fall videos and 17 ADL videos, and all the filmed scenarios is
similar to a nursing room. Different from the simulated datasets, it
is close to the real-life situation and includes much more detection
challenges, such as the person will go out of the camera view. To
evaluate the proposed methods and benchmark method [13], we
also made detailed frame-level labels for this dataset.

The YouTube Fall (YTBF) [13] dataset is an entirely real-life
dataset. It is collected from YouTube by searching keywords such
as fall, trip, slip, topple, tumble, and so on. It contains 88 fall videos,
and there are a total of 430 fall actions from these videos. This
dataset includes both indoor and outdoor scenarios and is very
challenging. Most of the videos are shot by mobile phone and shake
violently. Because this dataset does not involve the frame-level
labels, we only made the video-level fall detection on it.

4.2 Experiment Settings

Because the fall action usually happens in a short time, the positive
and negative samples are quite unbalanced in the fall detection
problem, which will cause the model hard to train. To tackle this
problem, we augment the fall frames to three times by the ran-
dom cropping and horizontally flipping, what operations widely
accepted for other computer vision tasks. However, we do not flip
any frames in vertical direction since most of the fall actions are
from a high place to a lower position in the video.

We use different evaluation metrics for the multi-level tasks.
For the FLFD and SLFD, we calculate the Precision, Recall and F1
score for every input, and the formulation is F; = 2 * (percision *
recall)/(percision + recall) in detail. For the VLFD task, we detect
the start index and the end index, and calculate the intersection-

over-union (IOU) between the true index and the predicted index,
whichis IOU [predict_start,predict_end]N[start_label,end_label]

= |predict_start,predict_end|U|start_label,end_label]"

Table 4: Compare SLFD baselines (SLAP, NC_2017[13]).

Dataset Method Precision | Recall | F1 score
Le2i 0.9359 0.9419 0.9389
URFD NC_2017 0.8333 0.8333 0.8333
YTBF 0.6250 - -
MCFD 0.9602 0.9548 0.9575
Le2i 0.9487 0.9427 0.9457
URFD | Proposed SLAP 0.8667 0.8387 0.8525
HQFS 0.8102 0.9652 0.8810
YTBF 0.6591 - -

Table 5: For the VLFD task, we use the same SLAP backbone
with different sampling strategies.

Dataset Sampling Strategy Avg. IOU
Lezi Sliding Window (window length k = 60) | 42.72%
Shot-based Sampling (VLFD pre-trained) | 43.17%
HOFS Sliding Window (window length k = 60) 31.55%
Shot-based Sampling (VLFD pre-trained) | 33.18%
YTBF Sliding Window (window length k = 60) 17.72%
Shot-based Sampling (VLFD pre-trained) 18.94%

4.3 Ablation Study for Pose Motion Feature

To evaluate the influences of different pose estimators and motion
representations, we conduct the ablation study on the SLFD task.
We use the OpenPose[6] and PoseFlow [29] to generate different
pose heatmaps and test them respectively. To evaluate the influ-
ences of different pose motion representations, we also compared
the dynamic image (DI)[5], PoTion[8], the proposed Dynamic Pose
Motion (DPM), and the normalized partial feature (NPF), respectively.
The results are shown in table 3 and similar relative performance
are observed on other datasets. To make a fair comparison and
avoid the numerical influence, we make the normalizing opera-
tion on the feature map of dynamic image, PoTion, DPM, and NPF,
respectively.

4.4 Results on FLFD, SLFD and VLFD

To do the FLFD task, we first extract the pose heatmaps from
the pre-trained Openpose COCO model. Then we train a 4-layer
(28x14x14x1) MLP for the fall prediction. We make the FLFD exper-
iments on all the datasets. To do the SLFD task, we use the proposed
algorithm pipeline, as stated in section 3.2 and figure 3. For all the
above-mentioned experiments, we adopt the same pre-trained VGG
model as used in [13], and fine-tune a 100-hidden-units’ LSTM for
different fall datasets. The results are shown in table 4.

Although from the FLFD task, the Poseflow is demonstrated a
better pose feature, for the reason of implementation, we still use
the Openpose COCO model to extract the pose heatmap in the
SLED and VLFD tasks. When the number of ADL videos are too few
than the fall videos, the F1 score will be deceptive. Therefore, for
the SLFD task, we make the experiments on the augmented MCFD
and HQFS datasets.
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Figure 5: The miss rate curves of the proposed VLAP.

For the video-level algorithm pipeline (VLAP), we implement the
sliding window and shot-based sampling strategies on all videos. We
randomly choose 80% videos to be training set and leave the others
to be the testing set. In order to train our method across different
datasets, we modify all the videos with 60 fps. We record the IOU
performance among the testing videos and report the average IOU
in table 5. We also show the missing rate curve for different datasets,
as shown in figure 5. As missing a fall action may lead to serious
consequences, we can increase the threshold of average IOU value
in the real-life applications of VLAP.

5 CONCLUSION

In this paper, we propose a multi-level definition for the fall recog-
nition from ADL. The different task has a different objective, thus
we can focus on different feature representation or develop a suit-
able algorithm pipeline for one specific task. For the SLFD task,
we propose a novel DPM representation and the corresponding
algorithm pipeline. The proposed SLAP establishes a new baseline
and achieve a better performance than current method, on both of
the simulated and real-life datasets.
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