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Figure 1: Visualization of the Pose-agnostic Anomaly Detection result. From top to bottom: the test image, the rendered image,
the heat-map of predicted anomaly score map, and the ground truth.

Abstract
Pose-agnostic anomaly detection refers to the situation where the
pose of test samples is inconsistent with the training dataset, allow-
ing anomalies to appear at any position in any pose. We propose a
novel method IGSPAD to address this challenge. Specifically, we
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employ 3D Gaussian splatting to represent the normal information
from the training dataset. To accurately determine the pose of the
test sample, we introduce an approach termed Inverting 3D Gauss-
ian Splatting (IGS) to address the challenge of 6D pose estimation
for anomalous images. The pose derived from IGS is utilized to ren-
der a normal image well-aligned with the test sample. Subsequently,
the image encoder of the Segment Anything Model is employed
to identify discrepancies between the rendered image and the test
sample, predicting the location of anomalies. Experimental results
on the MAD dataset demonstrate that the proposed method sig-
nificantly surpasses the existing state-of-the-art method in terms
of precision (from 97.8% to 99.7% at pixel level and from 90.9% to
98.0% at image level) and efficiency.
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1 Introduction
Due to the scarcity of anomalous samples, researchers have focused
on unsupervised anomaly detection, where only normal samples
are present in the training set. This approach has significantly ad-
vanced the field of visual anomaly detection. However, current
unsupervised anomaly detection methods assume that the test im-
ages are well-aligned with the training images, a condition that
only represents a subset of real-world scenarios. To further advance
the field of visual anomaly detection, we should consider more com-
mon scenarios, such as Pose-agnostic Anomaly Detection (PAD).
Following the work of Zhou et al. [27], Pose-agnostic Anomaly De-
tection asserts that there is no precise alignment between training
and test set images, with the test set potentially including poses
that were never encountered in the training set, thus increasing
the complexity of anomaly detection.

The Multi-pose Anomaly Detection (MAD) [27] dataset is the
first dataset specifically designed for Pose-agnostic Anomaly De-
tection (PAD). Testing on the MAD dataset, the efficacy of existing
2D unsupervised anomaly detection methods is significantly re-
duced. OmniposeAD [27], the first method tailored for the PAD task,
greatly improves detection performance compared to conventional
2D unsupervised methods. OmniposeAD utilizes NeRF [15] to repre-
sent the normal information of the training set. For each test image,
OmniposeAD estimates the camera pose using iNeRF [21] and then
renders a normal image based on the estimated pose. The test image
and its corresponding rendered image are subsequently processed
through feature extraction and compared to localize anomalies
area. However, as reported by OmniposeAD, running the complete
framework on the MAD dataset requires 10 to 15 hours on a single
NVIDIA Tesla A100, indicating low time efficiency. Consequently,
there is a pressing need to develop methodologies for the PAD task
that not only improve performance but also enhance time efficiency.

Recently, 3D Gaussian Splatting (3DGS) [10] has emerged as
a popular method for 3D scene representation, achieving state-
of-the-art results in rendering speed and image quality. With its
significant advantages in efficiency and quality, 3DGS proves more
effective for representing normal information compared to NeRF
[15]. Additionally, the differentiability of 3D Gaussians allows for
the calculation of gradients of the loss with respect to the camera
pose, which enables the estimation of camera poses for test images,
addressing the challenge of pose-agnostic in testing.

To this end, we propose our method Inverting 3D Gaussian
Splatting for Pose-agnosticAnomalyDetection (IGSPAD). Initially,

IGSPAD trains 3DGS with normal images from the training set to
represent the normal information. Unlike traditional Six-degree-of-
freedom pose estimation (6DoF) , estimating the camera pose for
anomalous images would be disrupted by the anomalous regions. To
address this issue, We specifically designed Inverting 3D Gaussian
Splatting (IGS) to estimate the camera poses of the anomalous
images. The test image and the normal image rendered under the
estimated pose is then processed through a pre-trained feature
extractor, and the cosine similarity of the features is calculated to
generate the final anomaly detection results.

Our proposed IGS involves three principal steps:
Gradient Calculation: We explicitly calculate the gradients of

the loss with respect to the camera pose using the chain rule.
Initial Pose Estimation: Using LightGlue [13], we match the

test image against all images in the training set, adopting the camera
pose information of the most closely matched training image as
the initial pose.

Matching Points Sampling: We sample around the points
that match between the rendered and test images to minimize the
influence of anomalous regions on the camera pose gradients.

Subsequently, we evaluated and compared the efficacy of dif-
ferent feature extractors on anomaly detection performance, ul-
timately selecting the image encoder of SAM [11] as the feature
extractor for our method.

Extensive experiments on the MAD dataset demonstrated the
effectiveness of our method. Our approach achieved state-of-the-
art performance in Pose-agnostic Anomaly Detection, enhancing
the pixel-level AUROC from 97.8% to 99.7% and the image-level
AUROC from 90.9% to 98.0%. Additionally, we achieved a pixel-level
AP of 75.53%. Our method required only 5 hours on a 4090 GPU,
marking at least a twofold improvement in time efficiency over
OmniposeAD, which took 10 to 15 hours on an A100 GPU. The
main contributions of our method are summarized as follows:

• We introduce a novel method for Pose-agnostic Anomaly
Detection called IGSPAD.

• We are the first one who to utilize the 3D Gaussian Splatting
model in anomaly detection.

• We propose IGS with MPS, innovatively addressing the chal-
lenges of camera pose estimation in the presence of anom-
alies.

• We conducted a thorough comparison and analysis of var-
ious feature extractors, establishing the best practices for
maximizing anomaly detection performance.

• Extensive experiments on the MAD dataset demonstrated
that our method is effective, significantly enhancing both
the performance and time efficiency of anomaly detection
and localization.

2 RELATEDWORK
2.1 2D Image Anomaly Detection
Current 2D image anomaly detection tasks are predominantly un-
supervised. These tasks involve detecting anomalies under the
assumption that the training set consists solely of normal images,
while the test set includes both normal and anomalous images. Ad-
ditionally, it is assumed that the images in both the training and
test sets are well-aligned.

https://doi.org/10.1145/3664647.3681619
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Figure 2: The framework of our method IGSPAD, which consists of three stages: (i) The 3D Gaussian [10] Model is trained using
normal images with pose information to capture the normal information. (ii) Estimate the pose information of the test image
through inverting 3D Gaussian Splatting (IGS). (iii) Render the normal image under the estimated pose, calculate the cosine
similarity with the test image after feature extraction to obtain the anomaly score.

2.1.1 Dataset. Commonly used datasets for 2D anomaly detection
include MVTEC-AD [1], MPDD [8], BTAD [16], and VisA [28].

2.1.2 Reconstruction-based Methods. Reconstruction-based meth-
ods, such as DRAEM [25], FAVAE [20], and UniAD [22], typically
operate under the assumption that models trained solely on normal
samples struggle to effectively reconstruct anomalous regions. Con-
sequently, areas in test images showing significant discrepancies
before and after reconstruction are more likely to be identified as
anomalous.

2.1.3 Feature Embedding-based. Feature embedding-based meth-
ods, such as PaDiM [4], PatchCore [17], and Fastflow [23], typically
employ a pre-trained feature extractor to extract image features
and then learn the representation of normal features. Consequently,
regions in the test images that deviate significantly from the repre-
sentation of the normal features are more likely to be identified as
anomalous.

2.1.4 Data Augmentation-based. Data Augmentation-based meth-
ods, such as Defect-GAN [26], AnomalyDiffusion [7] and CAGEN
[9], address the challenge of insufficient anomalous samples by
simulating or generating anomalies, thereby transforming the un-
supervised anomaly detection task into a supervised segmentation
or classification task.

2.2 Pose-agnostic Anomaly Detection
As introduced by PAD [27], pose-agnostic anomaly detection task
operates under the assumption that the images in both training
and test sets are not aligned well. The training set includes normal
images of various poses along with their pose information, while

the test set contains both normal and anomalous images without
pose information.

PAD introduces the OmniposeAD approach to address pose-
agnostic anomaly detection. Initially, OmniposeAD trained a NeRF
[15] model using the training set. Given a test image, the camera
pose is estimated using iNeRF [21], and this estimated pose infor-
mation is input into the trained NeRF model to render a normal
image that aligns well with the test image. Then comparing these
two images and localizing the anomalies.

2.3 3D Gaussian Splatting
Recently, 3D Gaussian Splatting (3DGS) [10] has achieved tremen-
dous success in 3D scene representation. As 3D Gaussians are dif-
ferentiable, gradient descent can be employed to optimize the pa-
rameters of 3D Gaussians, achieving a compact 3D representation.
Furthermore, the fast differentiable rasterizer for Gaussians enables
3DGS to render high-resolution images rapidly. Those capabilities
allows 3DGS to demonstrate significant advantages in high-quality,
real-time novel-view synthesis. 3DGS has been successfully applied
in various domains, including 3D generation [3] and Simultaneous
Localization and Mapping (SLAM) [14].

2.4 Sagment Anything
Segment Anything Model (SAM) [11] is a new paradigm for seg-
mentation models, using point prompts and box prompts to indicate
the content that the model needs to segment. Trained on a large
segmentation dataset of over 1 billion masks, SAM is capable of
segmenting any object on a certain image. Works such as Segment
Any Anomaly (SAA) [2] are dedicated to applying SAM for anomaly
detection.
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3 APPROACH
In this section, we introduce the proposed method IGSPAD. First,
we state the definition of pose-agnostic anomaly detection. Subse-
quently, we detail our anomaly detection approach in two subsec-
tions. As shown in Fig. 2, we employ 3DGS [10] to represent the
normal information of the training set and then estimate the camera
pose of the test image through inverting 3D Gaussian Splatting
(IGS). To minimize the influence of anomalous regions on gradi-
ent backpropagation, we introduce the Matching Points Sampling
(MPS) method. Finally, we extract features from both the rendered
image and the test image, compute the cosine similarity for each
pixel, and obtain the anomaly scores.

3.1 Problem Definition and Challenges
The concept of pose-agnostic anomaly detection, as defined by PAD
[27], assumes that the test samples are not well-aligned with the
images in the training set. Specifically, the training set comprises
anomaly-free images of objects in the same class but captured in var-
ious poses, with attached pose information. In contrast, the poses of
the test samples remain unknown and can be arbitrary, potentially
including poses not previously encountered in the training set. This
discrepancy makes it challenging to find a training image similar
enough to a test sample for effective anomaly detection.

3.2 Inverting 3D Gaussian Splatting
To address this challenge, we first employ 3D Gaussian Splatting
[10] to reconstruct the normal 2D images into a 3D representation,
thereby capturing the 3D normal information. As a result, our
objective transitions from locating a similar image in the training
set to rendering an image from the 3D Gaussian model that aligns
accurately with the test image. This task evolves into a 6D pose
estimation problem. Drawing on the method similar to iNeRF [21],
we optimize the camera parameters by computing the gradient with
L1 loss respect to the camera pose. Our proposed method Inverting
3D Gaussian Splatting (IGS) comprises three principle steps.

3.2.1 The gradient with respect to the camera pose. As the 3DGauss-
ian is differentiable, we are able to compute gradient of the loss with
respect to the camera pose. Gaussian Splatting SLAM [14] provides
the analytical Jacobian of the SE(3) camera pose with respect to the
3D Gaussians used in 3DGS. Instead of utilizing Lie algebra as in
Gaussian Splatting SLAM, we directly compute the gradient of the
translation component t of the view matrix T using the chain rule.
In 3DGS, a pixel colour 𝐶𝑝 can be calculated as follows:

𝐶𝑝 =
∑︁
𝑖∈𝑁

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (1)

where 𝑐𝑖 denotes the learned color of the 𝑖𝑡ℎ Gaussian, and 𝛼𝑖 is
related to the 2D Gaussian 𝑁 (𝝁′, 𝚺′) projected onto the camera
coordinate system plane from the 𝑖𝑡ℎ 3D Gaussian 𝑁 (𝝁, 𝚺) which
can be calculated as follows:

𝝁′ = PT𝝁, 𝚺′ = JW𝚺W𝑇 J𝑇 (2)

where P represents the projection operation, T denotes the view
matrix, J is the Jacobian of the linear approximation of the projective

transformation and W refers to the rotational component of the
view matrix T. According to the chain rule, we have:

𝜕L
𝜕t

=
𝜕L
𝜕𝐶

𝜕𝐶

𝜕𝛼𝑖
( 𝜕𝛼𝑖
𝜕𝝁′

𝜕𝝁′

𝜕t
+ 𝜕𝛼𝑖

𝜕𝚺′
𝜕𝚺′

𝜕t
) = 𝜕L

𝜕𝝁′
𝜕𝝁′

𝜕t
(3)

According to Eq. (2), 𝜕𝝁′

𝜕t = J, which is easier to calculate. From
this, we can explicitly calculate the gradient of the loss with respect
to the translation component t of the view matrix T, and the cal-
culation of the gradient for the rotational component follows the
implementation used in Gaussian Splatting SLAM [14].

3.2.2 Initial Pose Estimation. From the bad case shown in Fig. 8, a
poor initial pose can have a devastating impact on the performance
of anomaly detection and it is important to find a good initial pose.
We utilize the pose information from the training set, matching
the test image with all images in the training set using LightGlue
[13]. We assume that the more matched points two images have,
the closer their poses are. The pose information from the training
image with the highest number of matching points to the test image
is used as the initial pose.

3.2.3 Matching Points Sampling. Unlike traditional 6D pose estima-
tion problem, pose estimation on anomaly images can be affected
by anomalous regions. The losses caused by these anomalous areas
can impact the optimization of the camera pose. As Fig. 3 demon-
strate, IGS without MPS would focus on compensating for the losses
caused by anomalies at an early stage. To address this issue, we
propose Matching Points Sampling (MPS).

We first matching the rendered image with the test image using
LightGlue [13]. As shown in Fig. 4, the anomalous area can hardly
be matched to any point in the rendered image. Then we set the
weights of the pixels within a 𝑘-pixel radius around the matching
points to 1, while the rest are set to 0, resulting in the weighting
map. The loss can be caculate as follows:

𝐿 =

∑𝑛
𝑖=0

∑𝑛
𝑗=0 |𝐼𝑟 (𝑖, 𝑗) − 𝐼𝑡 (𝑖, 𝑗) | ·𝑊 (𝑖, 𝑗)

𝑛2
(4)

where 𝐼𝑟 and 𝐼𝑡 refer to the rendered image and the test image, and
𝑊 is the weighting map.

As shown in Fig. 4, the sampled image consists mostly of normal
regions, the anomalous regions excluded from backpropagation.
Fig. 3 demonstrates that IGS with MPS consistently aligns with the
normal regions.

3.3 Anomaly detection and localization
Given a test image 𝐼𝑡 , we obtain a pose Θ̂ through IGS and a normal
rendered image 𝐼𝑟 of Θ̂. Assuming that 𝐼𝑟 is well-aligned with 𝐼𝑡 ,
anomaly detection and localization then resemble a "spot the differ-
ence" task, where the objective is to identify discrepancies between
𝐼𝑟 and 𝐼𝑡 .

Follow Feature-Embedding-based anomaly detection methods
like PADIM [4] and PatchCore [17], we obtain the feature map 𝑓𝑡 ∈
𝑅𝐶×𝐻×𝑊 of 𝐼𝑡 and the feature map 𝑓𝑟 ∈ 𝑅𝐶×𝐻×𝑊 of 𝐼𝑟 . Then the
pixel level anomaly score 𝑆𝑃 and the image level score 𝑆𝐼 between
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Figure 3: The visualization of IGS. The first line is IGS without MPS and the second line is IGS with MPS. IGS without MPS
initially expends significant optimization efforts on matching anomalous regions, such as aligning the green tail with the black
area. However, MPS can prevent this issue.

(a) The visualization of matching between the test image (left) and
the rendered image (right). The tail of the bird in the test image is
missing.

(b) The weighting map. (c) The sampled image.

Figure 4:When backpropagating the camera pose, anomalous
regions such as a missing tail can hinder optimization. By
using matching point sampling, the impact of these anoma-
lous areas can be eliminated.

𝐼𝑡 and 𝐼𝑟 can be calculate as follows:

𝑆𝑃 (𝑖, 𝑗) = 1 − ft (:, i, j) · fr (:, i, j)
∥ft (:, i, j)∥∥fr (:, i, j)∥

(5)

𝑆𝐼 =𝑚𝑎𝑥 (𝐴𝑃 (𝑆𝑃 )) (6)

where 𝑖 𝑗 represents the position of pixels and 𝐴𝑃 () signifies the
operation of average pooling. 𝑆𝑃 will be upsampled to the size of
the test image 𝐼𝑡 .

We consider different pretrained models as our feature extractor,
ResNet18 [6],WideResNet50 [24], CAIT [18], and the image encoder
of SAM [11]. ResNet18, WideResNet50 and CAIT are pre-trained on
classification tasks, whereas SAM is pre-trained on segmentation
tasks, which is more closely related to the anomaly detection task.
Table 1 demonstrates that, compared to other pre-trained models,
SAM significantly enhances the capability of anomaly detection,

Table 1: Ablation studies with pixel-level AUROC (𝐴𝑈𝐶𝑃 ),
pixel-level AP (𝐴𝑃𝑃 ), and image-level AUROC (𝐴𝑈𝐶𝐼 ),
grouped by: (i) with or without MPS; (ii) the type of feature
extractor; and (iii) the performance of our IGSPAD for refer-
ence.

Method MPS Feature Extractor 𝐴𝑈𝐶𝑃 𝐴𝑃𝑃 𝐴𝑈𝐶𝐼

OmniposeAD - - 97.8 - 90.9

IGSPAD ✗ sam_vit_b 99.60 62.44 96.63
IGSPAD ✓ sam_vit_b 99.74 75.53 97.96

IGSPAD ✓ resnet18 99.00 36.58 93.70
IGSPAD ✓ wide_resnet50_2 99.07 41.16 95.81
IGSPAD ✓ cait_m48_448 98.57 25.23 65.65

IGSPAD ✓ sam_vit_l 99.71 71.75 97.84
IGSPAD ✓ sam_vit_h 99.71 72.81 97.64

especially the pixel AP metric. Consequently, we ultimately select
SAM as our feature extractor.

4 Experiments
In this section, we first introduce our experimental setup and im-
plementation details. Then, we conduct ablation studies on the
individual components of IGSPAD. Finally, we compare our method
with other existing Pose-agnostic Anomaly Detection methods.

4.1 Experiments Setup
4.1.1 Dataset. MAD [27], which means multi-pose anomaly de-
tection dataset, provides 20 categories of LEGO animals toys with
diverse shape complexity and color contrasts, constructed using
Blender in combination with Ldrew (LEGO parts library). For each
category, the training set includes 210 images of different poses
along with their corresponding pose information, while the test set
comprises 150 to 300 anomalous images and several normal images
without pose information. All anomalies are manually generated
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Table 2: Results for anomaly localization / detection with AUROC metric on MAD dataset. The results highlighted in bold
represent the best performance.

Category [17] [19] [23] [5] [12] [25] [20] [22] [27] OURS

Gorilla 88.4/66.8 93.8/65.3 91.4/51.1 94.7/69.2 91.4/41.8 77.7/58.9 92.1/46.8 93.4/56.6 99.5/93.6 99.8/96.1
Unicorn 58.9/92.4 89.3/79.6 77.9/45.0 89.9/82.3 85.2/85.6 26.0/70.4 88.0/68.3 86.8/73.0 98.2/94.0 99.9/99.7
Mallard 66.1/59.3 86.0/42.2 85.0/72.1 87.3/74.9 83.7/36.6 47.8/34.5 85.3/33.6 85.4/70.0 97.4/84.7 99.9/100.0
Turtle 77.5/87.0 91.0/64.4 83.9/67.7 90.2/51.0 88.7/58.3 45.3/18.4 89.9/82.8 88.9/50.2 99.1/95.6 99.9/99.1
Whale 60.9/86.0 88.6/64.1 86.5/53.2 89.2/57.0 87.9/77.7 55.9/65.8 90.1/62.5 90.7/75.5 98.3/82.5 99.9/96.3
Bird 88.6/82.9 90.6/52.4 90.4/76.5 91.8/75.6 92.2/78.4 60.3/69.1 91.6/73.3 91.1/74.7 95.7/92.4 99.0/99.9
Owl 86.3/72.9 91.8/72.7 90.7/58.2 94.6/76.5 93.9/74.0 78.9/67.2 96.7/62.5 92.8/65.3 99.4/88.2 99.8/98.5

Sabertooth 69.4/76.6 89.3/56.0 88.7/70.5 93.3/71.3 88.0/64.2 26.2/68.6 94.5/82.4 90.3/61.2 98.5/95.7 99.9/99.6
Swan 73.5/75.2 90.8/53.6 89.5/63.9 93.1/67.4 95.0/66.7 75.9/59.7 87.4/50.6 90.6/57.5 98.8/86.5 99.7/97.2
Sheep 79.9/89.4 93.2/56.5 91.0/71.4 94.3/80.9 94.1/86.5 70.5/59.5 94.3/74.9 92.9/70.4 97.7/90.1 99.4/94.2
Pig 83.5/85.7 94.2/50.6 93.6/59.6 97.1/72.1 95.6/66.7 65.6/64.4 92.2/52.5 94.8/54.6 97.7/88.3 99.9/98.1

Zalika 64.9/68.2 86.2/53.7 84.6/54.9 89.4/66.9 87.7/52.1 66.6/51.7 86.4/34.6 86.7/50.5 99.1/88.2 99.5/92.6
Phoenix 62.4/71.4 86.1/56.7 85.7/53.4 87.3/64.4 87.0/65.9 38.7/53.1 92.4/65.2 84.7/55.4 99.4/82.3 99.9/98.4
Elephant 56.2/78.6 76.8/61.7 76.8/61.6 72.4/70.1 77.8/71.7 55.9/62.5 72.0/49.1 70.7/59.3 99.0/92.5 99.8/99.7
Parrot 70.7/78.0 84.0/61.1 84.0/53.4 86.8/67.9 83.7/69.8 34.4/62.3 87.7/46.1 85.6/53.4 99.5/97.0 99.9/99.0
Cat 85.6/78.7 93.7/52.2 93.7/51.3 94.7/65.8 95.0/68.2 79.4/61.3 94.0/53.2 93.8/53.1 97.7/84.9 99.9/97.7

Scorpion 79.9/82.1 90.7/68.9 74.3/51.9 91.9/79.5 92.2/91.4 79.7/83.7 88.4/66.9 92.2/69.5 95.9/91.5 98.9/100
Obesobeso 91.9/89.5 94.2/60.8 92.9/67.6 95.8/80.0 96.2/80.6 89.2/73.9 92.7/58.2 93.6/67.7 98.0/97.1 99.8/94.4

Bear 79.5/84.2 90.6/60.7 85.0/72.9 92.2/81.4 90.7/78.7 39.2/76.1 90.1/52.8 90.9/65.1 99.3/98.8 99.9/99.9
Puppy 73.3/65.6 84.9/56.7 80.3/59.5 89.6/71.4 82.3/53.7 45.8/57.4 85.6/43.5 87.1/55.6 98.8/93.5 99.9/98.9

Mean 74.7/78.5 89.3/59.5 86.1/60.8 90.8/71.3 89.8/68.2 58.0/60.9 89.4/58.0 89.1/62.2 97.8/90.9 99.7/98.0

(a) (b) (c) (d) (e) (f)

Figure 5: Comparison of visualization between IGSPAD with
and withoutMSP in terms of rendering and anomaly localiza-
tion. (a) represents the test image, (b) is the rendered image
from IGS without MSP, (c) is the rendered image from IGS
with MSP, (d) is the ground truth, (e) shows the anomaly lo-
calization results from IGS without MSP, and (f) shows the
anomaly localization results from IGS with MSP.

by professional LEGO players using Photoshop, resulting in suf-
ficiently realistic anomalies. Furthermore, MAD quantifies color
contrast and shape complexity for each category in order to assess
their influence on the performance of anomaly detection. Detailed

information is provided in the appendix. It is important to note that
none of the data are derived from the real-world scenarios.

4.1.2 Evaluation Metrics. Following previous work, we select the
Area Under the Receiver Operating Characteristic Curve (AUROC)
as our primary evaluation metric. Additionally, we specifically re-
port the pixel-wise average precision (AP) to demonstrate the accu-
racy of our method in anomaly segmentation.

4.1.3 Implementation Details. For each category, the 3D Gaussian
model was trained for 100,000 iterations with the image resolution
set at 800×800. The IGS process for camera pose estimation involved
a total of 300 optimization steps, with the learning rate set to 0.01
and decayed to 0.001 at 200 steps. The feature extractor for IGSPAD
has been selected as the image encoder from sam_vit_b. For all 20
categories, training the 3D Gaussian required approximately 160
minutes, pose estimation and image rendering took about 2 hours,
and anomaly detection and localization needed roughly 15 minutes,
totaling approximately 5 hours. All experiments were conducted
on the NVIDIA 4090 GPU.

4.2 Ablation Studies
In this subsection, we discuss the effectiveness of MPS and the
differences between various feature extractors.

4.2.1 Matching Points Sampling. As Table 1 illustrates, the MPS
enhances the performance of anomaly detection in all metrics. The
augmentation in AP is notably significant. Since most of rendered
image without MPS already achieve satisfactory alignment with
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Figure 6: The visualization of different feature extractors’ performance of anomaly detection.

Figure 7: Correlation between object attributes and anomaly
detection performance across various feature extractors

the test images, the improvement in the AUROC metric is relatively
modest.

Fig. 5 showcases instances of suboptimal alignment under the
regime without MPS, highlighting that such misalignment can
precipitate a significant number of false positives in anomaly local-
ization, thereby exerting a considerable detrimental impact on the
AP metric.

Fig. 3 demonstrates the alignment of rendered images and test
images in the same iteration step under the conditions of IGS with-
out MPS and IGS with MPS. In the early stages of iteration, IGS
without MPS attempts to align the anomalous regions with the nor-
mal regions. By the 250th iteration step, IGS with MPS has already
aligned, while IGS without MPS still has not aligned by the 300th
step.

Compared to simple pose estimation, our method MPS can avoid
the influence of anomalous regions on the gradient of camera pose,
accelerate the optimization process of camera pose estimation,
achieve more accurate camera pose estimation, and significantly
improve the performance of anomaly detection.

4.2.2 Feature Extractor. As indicated in Table 1, different feature
extractors have a significant impact on anomaly detection perfor-
mance, especially in the AP metric. Not surprisingly, sam, which
is pre-trained on segmentation tasks, has a substantial advantage
over resnet18, wideresnet50, and CAIT, which are pre-trained on
classification tasks.

Fig. 6 presents the visualization results of anomaly localization
with different feature extractors. Sam has demonstrated excellent
results in anomaly segmentation, showing heightened sensitivity to
anomalies as well as robustness to noise in non-anomalous regions.
Comparing three different models of SAM with varying amounts
of parameters, the model with the fewest parameters surprisingly
achieved the best anomaly detection performance. This indicates
that it is possible to enhance the time efficiency of anomaly detec-
tion without reducing its effectiveness.

Fig. 7 compares the performance of different feature extractors at
varying levels of color contrast and shape complexity. Contrary to
most methods described in PAD [27], our method’s performance is
negatively correlated with color contrast and positively correlated
with structural complexity. Comparing the performance of different
feature extractors, there is an overall negative correlation with
color contrast for all four types, with ResNet, WideResNet, and
CaiT showing more stable performances, which might be more
closely associated with IGS. In terms of shape complexity, ResNet,
WideResNet, and CaiT demonstrate a negative correlation, while
SAM shows a positive correlation, underscoring the advantage of
SAM in dealing with complex scenarios. With the increase in shape
complexity, the other three feature extractors exhibit a rise in false
positives unrelated to anomalies, leading to a reduction in anomaly
detection performance.

Overall, SAM as the feature extractor, consistently outperforms
the remaining three across all categories, which provides a directive



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Jiang et al.

Figure 8: Qualitative examples. From top to bottom: the test image, the rendered image, the predicted anomaly score map, and
the ground truth. The green boxes represent well-predicted cases, while the red boxes denote some bad cases which may be due
to the bad initial pose estimation.

for future training of specialized pre-trained feature extractors
dedicated to anomaly detection.

4.3 Comparison with State-of-the-art Methods
For a comprehensive comparison, We selected advanced 2D image
anomaly detection methods and the SOTA pose-agnostic anomaly
detection method OmniposeAD [27]. For the Feature Embedding-
based 2D anomaly detection methods, we considered PatchCore
[17], STFPM [19], Fastflow [23], CFlow [5] and CFA [12]. For the
Reconstruction-based 2D anomaly detection methods, we selected
DRAEM [25], FAVAE [20], and UniAD [22].

Table 2 demonstrates the superiority of our method, which
achieves the best performance in almost all categories, except for
the image-level AUROC in the Obesobeso. Compared to the cur-
rent state-of-the-art method, we have achieved an improvement of
1.9 in average pixel-level AUROC and 7.1 in average image-level
AUROC. Compared to the method OmniposeAD which also based
on rendering and pose estimation, our approach achieves more
accurate camera pose estimation and renders higher quality images.
Additionally, by applying SAM as a feature extractor, our method
significantly improves segmentation accuracy, thereby enhancing
its exceptional performance in anomaly detection.

Fig. 8 displays a series of qualitative examples. The results of
anomaly prediction are satisfactory most of the time. However,

there are still some bad cases where the edges match the test image,
but the actual rendering is of its backside or from another angle.
These issues are typically due to optimization commencing from
an unfavorable initial pose, leading the loss to settle into a local
minimum, indicating that a good initial camera pose is extremely
important.

5 Conclusion
In this paper, we propose a novel method IGSPAD for Pose-agnostic
Anomaly Detection, which is based on the 3D Gaussian Splatting.
We utilize 3DGS to represent the normal information of training set.
For the problem of camera pose estimation in anomalous images, we
propose the method of Inverting 3D Gaussian Splatting with Match-
ing Points Sampling, which eliminates the impact of anomalous
regions on camera pose estimation. We compared various feature
extractors and analyzed the impact of features on the performance
of anomaly detection. Extensive experiments on the MAD dataset
show that, compared to existing state-of-the-art methods, our ap-
proach achieved significant improvements. In future work, we plan
to further apply our method to anomaly detection in real-world
scenarios, to validate whether a training set generated using our
approach can effectively detect anomalies in real scenes. Addition-
ally, we will explore how to train a pre-trained feature extractor
specifically designed for anomaly detection.
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