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a b s t r a c t 

Despite the impressive performance of random forests (RF), its theoretical properties have not been thor- 

oughly understood. In this paper, we propose a novel RF framework, dubbed multinomial random forest 

(MRF), to analyze its consistency and privacy-preservation . Instead of deterministic greedy split rule or 

with simple randomness, the MRF adopts two impurity-based multinomial distributions to randomly se- 

lect a splitting feature and a splitting value, respectively. Theoretically, we prove the consistency of MRF 

and analyze its privacy-preservation within the framework of differential privacy. We also demonstrate 

with multiple datasets that its performance is on par with the standard RF. To the best of our knowledge, 

MRF is the first consistent RF variant that has comparable performance to the standard RF. The code is 

available at https://github.com/jiawangbai/Multinomial- Random- Forest . 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

Random forest (RF) [1] is a popular type of ensemble learn- 

ng method. Because of its excellent performance and fast yet effi- 

ient training process, RF and other tree-based methods have been 

idely used in many fields, such as computer vision [2–4] and data 

ining [5–7] . However, due to the inherent bootstrap randomiza- 

ion and the highly greedy data-dependent construction process, 

t is very difficult to analyze the theoretical properties of RFs [8] , 

specially for the consistency . Since consistency ensures that the 

odel goes to optimal under a sufficient amount of data, it is crit- 

cal in this big data era. 

To address this issue, several RF variants [8–13] were proposed. 

nfortunately, all existing consistent RF variants suffer from rel- 

tively poor performance compared with the standard RF due to 

wo mechanisms introduced for ensuring consistency. On the one 

and, the data partition process allows only half of the training 

amples to be used for constructing the tree structure, which sig- 

ificantly reduces the performance of consistent RF variants. On 

he other hand, extra randomness ( e.g. , Poisson or Bernoulli dis- 

ribution) is introduced, which further hinders the performance. 

ccordingly, those mechanisms introduced for theoretical analy- 

is make them difficult to eliminate the performance gap between 

onsistent RF and standard RF. 
∗ Corresponding author. 

E-mail addresses: yang.xue@sz.tsinghua.edu.cn (X. Yang), 

iast@sz.tsinghua.edu.cn (S.-T. Xia). 
1 indicates equal contribution 
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031-3203/© 2021 Published by Elsevier Ltd. 
Is this gap really impossible to fill? In this paper, we propose a 

ovel consistent RF framework 2 , dubbed multinomial random for- 

st (MRF), by introducing the randomness more reasonably. In the 

RF, two impurity-based multinomial distributions are used as the 

asis for randomly selecting a splitting feature and a specific split- 

ing value respectively. Accordingly, the “best” split point has the 

ighest probability to be chosen, while other candidate split points 

hat are nearly as good as the “best” one will also have a good 

hance to be selected, as shown in Fig. 1 . This randomized splitting 

rocess is more reasonable and makes up the accuracy drop with 

lmost no extra computational costs. Besides, privacy-preservation 

s very important in the big data era, especially for machine learn- 

ng, due to the continued emergence of privacy breaches and data 

buse. More specifically, data is the huge digital wealth for organi- 

ations in machine learning, and attackers may infer or reconstruct 

he sensitive training data as much as possible from the public 

odel. Therefore, protecting data privacy ( e.g. , prevent unautho- 

ized access to training data) is becoming an important aspect in 

he development of machine learning. The introduced impurity- 

ased randomness is essentially an exponential mechanism satisfy- 

ng differential privacy, therefore we can also analyze the privacy- 

reservation of MRF under the differential privacy framework. To 

he best of our knowledge, there is no RF framework could be 

dopted to analyze the consistency and privacy-preservation simul- 

aneously. 

The main contributions of this work are three-fold: (1) we pro- 

ose a novel multinomial-based method to improve the greedy 
2 In this paper, we focus on the consistency and privacy-preservation in the clas- 

ification problem. We will explore the regression task in our future work. 

https://doi.org/10.1016/j.patcog.2021.108331
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108331&domain=pdf
https://github.com/jiawangbai/Multinomial-Random-Forest
mailto:yang.xue@sz.tsinghua.edu.cn
mailto:xiast@sz.tsinghua.edu.cn
https://doi.org/10.1016/j.patcog.2021.108331
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Fig. 1. Splitting criteria of different RFs. The standard RF always chooses the split 

point with highest impurity decrease. Denil14 and BRF choose the split point most- 

lyin a greedy way, while holding a small or even negligible probability in select- 

ing other points randomly. The selection probability in MRF is positively associated 

with the impurity decrease. All three RF variants introduce randomness to fulfill the 

consistency, where MRF is the most reasonable method. 
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plit process of decision trees; (2) we propose a new RF variant 

 i.e. , MRF), based on which we analyze its consistency and privacy- 

reservation; (3) extensive experiments demonstrate that the per- 

ormance of MRF is on par with standard RF and is better than 

ll existing consistent RF variants. To the best of our knowledge, 

RF is the first consistent RF variant that simultaneously has per- 

ormance comparable to the standard RF. 

. Related work 

.1. Consistent random forests 

Random forest (RF) [1] is a distinguished ensemble algorithm, 

nspired by the random subspace [14] and random split selection 

15] . The standard RF is built upon bootstrap datasets and split- 

ing with the CART methodology [16] . Its various variants, such as 

uantile regression forests [17] , rotation random forests [18] , and 

eep forest [19] , were proposed for effectiveness, efficiency, and 

reat interpretability. Especially, the oblique random forests [20–

2] , where trees employ a linear combination of features to gen- 

rate an oblique hyperplane at each node, can achieve remarkable 

erformance. RFs were also used in a wide range of applications, 

ncluding time series forecasting [23] and visual tracking [24] . De- 

pite the success of RFs in practice, their theoretical analysis has 

et been fully established. Breiman [1] showed the first theoret- 

cal result indicating that the generalization error is bounded by 

he performance of individual tree and the diversity of the whole 

orest. Moreover, the relationship between RFs and the nearest 

eighbor-based estimator was also studied [25] . 

One of the important properties, consistency, has yet to be es- 

ablished for RFs. Consistency ensures that the result of RF con- 

erges to the optimum as the sample size increases, which was 

rst discussed by Breiman [9] . As an important milestone, Biau 

10] proved the consistency of two directly simplified RFs. Sub- 

equently, several consistent RF variants were proposed for vari- 

us purposes, for example, random survival forests [26] , an on- 

ine version of RF variant [27] and generalized regression forests 

28] . Recently, Haghiri [29] proposed CompRF, whose split process 

s relied on triplet comparisons rather than information gain. To 

nsure consistency, [8] suggested that an independent dataset is 

eeded to fit in the leaf. This approach is called the data parti- 

ion. Under this framework, [12] developed a consistent RF variant 

called Denil14 in this paper) to narrow the gap between theory 

nd practice. Following Denil14 , [13] introduced the Bernoulli ran- 

om forests (BRF), which reached the state-of-the-art performance. 

esides, Gao et al. [30] discussed the convergence rate of a type of 

onsistent RF variant most recently. 
2 
Although several consistent RF variants were proposed, due to 

he relatively poor performance compared with RF, how to fulfill 

he gap between theoretical consistency and the performance in 

ractice is still an important open question. 

.2. Privacy-preservation 

With the growing concerns about privacy, many strategies for 

rotecting privacy in RFs have been explored in recent years, like 

 -anonymity [31] and l-diversity [32] . However, these strategies do 

ot provide privacy in a mathematically rigorous way. In order to 

mprove the privacy guarantee, differential privacy (DP) [33] , as a 

ew and promising privacy-preservation model, has been widely 

dopted recently, especially for RFs [34–36] . Specifically, due to the 

rade-off between privacy and learning accuracy in the DP-based 

Fs, most researches considered improving the learning accuracy 

y designing allocation strategies of the privacy budget [37,38] or 

ecreasing the sensitivity [35] . However, in most cases, the learn- 

ng accuracy of these schemes is still not satisfactory in practice. 

Since we use DP technique to guarantee the privacy of sen- 

itive data, we first outline the basic content of differential pri- 

acy here. Let D = { (X i , Y i ) } n i =1 
denote a dataset consisting of n i.i.d.

bservations, where X i ∈ R 

D indicates D -dimensional features and 

 i ∈ { 1 , . . . , K} indicates the label. Suppose A = { A 1 , . . . , A D } repre-

ents the feature set. The formal definition of differential privacy is 

iven as follow: 

efinition 1 . ( ε-Differential Privacy) A randomized mechanism 

 gives ε-differential privacy for every set of outputs O and any 

eighboring datasets D and D 

′ differing in one record, if M satis- 

es: 

r [ M (D) ∈ O ] � exp ( ε) · Pr [ M ( D 

′ ) ∈ O ] , (1)

here M (D) and M ( D 

′ ) are the outputs of the mechanism for 

nput databases D and D 

′ , respectively, Pr is the randomness of 

he noise in the mechanism, and ε denotes the privacy budget that 

estricts the privacy guarantee level of M . 

The aim of differential privacy is to mask the differences in 

uery between neighboring datasets D and D 

′ . Specifically, from 

q. (1) , we can see that a small ε ( � 1 ) means that the differ-

nce of mechanism’s output probabilities using D and D 

′ is small, 

hich indicates high perturbations of ground truth outputs and 

ence high privacy, and vice versa. That is a smaller ε represents a 

tronger privacy level. The non-private case is given by ε = ∞ . 

Besides, according to Definition 1 and the intuition above, the 

oise protects the membership of a data point in the dataset. For 

xample, when conducting a clinical experiment, sometimes a per- 

on does not want the observer to know that he or she is involved 

n the experiment. This is due to the fact that the observer may 

ink the test result to the appearance/disappearance of a certain 

erson and harm the interest of that person. Proper membership 

rotection would ensure that replacing this person with another 

ne will not affect the result too much. This property holds only 

f the algorithm itself is randomized, i.e. , the output is associated 

ith a distribution. And this distribution will not change too much 

f a certain data point is perturbed or even removed. This is exactly 

hat differential privacy tries to achieve. 

Currently, two basic mechanisms, i.e. , Laplace mechanism 

39] and exponential mechanism [40] , are widely used to realize dif- 

erential privacy. The first one is suitable for numeric queries and 

he second one is suitable for non-numeric queries. As presented 

n Section 3 , in the multinomial random forest (MRF), we need to 

hoose the splitting feature and splitting value, which belongs to 

he non-numeric query. Thus, we adopt the exponential mecha- 

ism to preserve privacy. More specifically, suppose that one wants 

o publish f (D) , and let O denote the set of possible outputs. To 
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atisfy ε-DP, the exponential mechanism should output values in 

 following some probability distribution. Naturally, some values 

n O are more desirable than others. For example, the most de- 

irable output is the true value f (D) , and one has natural prefer- 

nces among other values as well. Specifically, consider a transac- 

ional dataset D, and one wants to output the item that appears 

ost frequently in D. Then O is the set of all items, and between

wo items, we prefer to output the one that appears more often. 

his preference is encoded using a quality function q : (D, o) → R ,

nd without loss of generality, we assume that a higher quality 

alue indicates better utility. For example, in the most frequent 

tem case, a natural choice is to define q (D, o) to be the number

f times the item o appears in D. 

efinition 2 (Exponential Mechanism) . Let q : (D, o) → R be a 

core function of dataset D that measures the quality of output 

 ∈ O . The exponential mechanism M (D) satisfies ε-DP, if it out- 

uts o with probability proportional to exp 

(
εq (D,o) 

2 � q 

)
, i.e. , 

r [ M (D) = o] = 

exp 

(
εq (D,o) 

2 � q 
)

∑ 

o ′ ∈ O exp 

(
εq (D,o ′ ) 

2 � q 
) , (2) 

here � q is the sensitivity of the quality function, as follows: 

 q = max 
∀ o, D , D ′ 

∣∣q (D, o) − q ( D 

′ , o) 
∣∣. (3) 

According to Definition 2 , we can obtain that the smaller the 

rivacy budget ε, the closer the probability of each output, and 

hus the attacker cannot judge the true result. When ε = 0 , the pri-

acy protection level is the highest, and all results have the same 

robability to be outputted. In addition, given the privacy budget ε
nd the sensitivity � q , the higher the value of q (D, o) , the higher

he probability Pr [ M (D) = o] of outputting o. That is, when apply-

ng the exponential mechanism, the probability that a low-quality 

utput is selected is exponentially smaller than that of high-quality 

utput. 

. Multinomial random forest 

.1. Training set partition 

In the MRF, we also replace the bootstrap used in standard RF 

ith the training set partition, as suggested in [8] . This is neces- 

ary for ensuring consistency. Specifically, to build a tree, the train- 

ng set D is divided randomly into two non-overlapping subsets D 

S 

nd D 

E , which play different roles (as shown in Fig. 2 ). D 

S will be

sed to build the tree’s structure, and we call the observations in 

his subset the structure points . Once a tree is built, the labels 

f its leaves will be re-determined on the basis of another subset 

 

E , where the corresponding observations are called estimation 

oints . The ratio of two subsets is parameterized by partition rate 
Fig. 2. An illustration of data partition. 

c

s

b

D
D

 

3 
 | Structure points | / | Estimation points | . To build another tree, the 

raining set is re-partitioned randomly and independently. 

.2. Tree construction 

The construction of a tree relies on a recursive partitioning al- 

orithm. Specifically, to split a node, we introduce two impurity- 

ased multinomial distributions: one for splitting feature selection 

nd another for splitting value selection. The specific split point 

onsists of a pair of a splitting feature and a splitting value. Be- 

ides, the impurity decrease at a node u caused by a split point v 
s defined as 

(D 

S 
u , v ) = T (D 

S 
u ) −

|D 

S l 
u | 

|D 

S 
u | T (D 

S l 
u ) −

|D 

S r 
u | 

|D 

S 
u | T (D 

S r 
u ) , (4)

here D 

S 
u is the subset of D 

S at a node u , D 

S l 
u and D 

S r 
u generated by

plitting D 

S 
u with v , are two subsets in the left child and right child

f the node u , respectively, and T (·) is the impurity criterion ( e.g. ,

hannon entropy or Gini index). Unless other specification, we ig- 

ore the subscript u of each symbol, and use I to denote I(D 

S 
u , v )

or shorthand in the rest of this paper. 

Let V = { v i j } denote the set of all possible split points for the

ode and I i, j is the corresponding impurity decrease, where v i j is 

 -th value on the j-th feature. In what follows, we first introduce 

he feature selection mechanism for a node, and then describe 

he splitting value selection mechanism corresponding to the se- 

ected feature. M(φ) -based splitting feature selection. We obtain 

 vector I = ( I 1 , · · · ,I D ) = 

(
max 

i 
{ I i, 1 } , · · · , max 

i 
{ I i,D } 

)
based on each 

 i, j , where max 
i 

{ I i, j } is the largest possible impurity decrease of the 

eature A j . Then, the following three steps need to be performed: 

• Normalize I: ˆ I = 

(
I 1 −min I 

max I−min I 
, · · · , 

I D −min I 
max I−min I 

)
; 

• Compute the probabilities φ = (φ1 , · · · , φD ) = softmax ( 
B 1 
2 

ˆ I ) , 

where B 1 ≥ 0 is a hyper-parameter related to privacy budget; 
• Randomly select a feature according to the multinomial distri- 

bution M(φ) . 

M(ϕ) -based splitting value selection. After selecting the fea- 

ure A j for a node, we need to determine the corresponding split- 

ing value to construct two children. Suppose A j has m possible 

plitting values, we need to perform the following steps: 

• Normalize I ( j) = (I 1 , j , · · · , I m, j ) as ˆ I ( j) , where j identifies the 

feature A j and 

ˆ I ( j) = 

(
I 1 , j −min I ( j) 

max I ( j) −min I ( j) , · · · , 
I m, j −min I ( j) 

max I ( j) −min I ( j) 

)
; 

• Compute the probabilities ϕ = (ϕ 1 , · · · , ϕ m 

) = softmax ( 
B 2 
2 

ˆ I ( j) ) , 

where B 2 ≥ 0 is another hyper-parameter related to privacy 

budget; 
• Randomly select a splitting value based on the multinomial dis- 

tribution M(ϕ) . 

We repeat the above processes to split nodes until the stopping 

riterion is met. The stopping criterion relates to the minimum leaf 

ize k . Specifically, the number of estimation points is required to 

e at least k for every leaf. 

M(ψ) -based label selection. Once a tree is grown based on 

 

S , we determine the label of its leafs based on estimation points 

 

E , as follows: 

• Re-determine the predicted probability vector P = 

(p 1 , · · · , p K ) according to D 

E for each leaf L , i.e. , 

p i = 

1 
|L E | 

∑ 

(X,Y ) ∈L E I { Y = i } , (i = 1 , · · · , K) , where L 

E is the

set of estimation points in the leaf L ; 
• Compute the probabilities ψ = (ψ 1 , · · · , ψ K ) = softmax ( 

B 3 
2 P ) 

for each leaf L , where B 3 ≥ 0 is also a hyper-parameter related 

to privacy budget; 
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Algorithm 1 Decision Tree Training in MRF: MT ree () . 

1: Input: Structure points D 

S , estimation points D 

E and hyper- 

parameters k , B 1 , B 2 , and B 3 . 

2: Output: A decision tree T in MRF. 

3: if |D 

E | > k then 

4: Calculate the impurity decrease of all possible split points 

v i j . 

5: Select the largest impurity decrease of each feature to cre- 

atea vector I, calculate the normalized vector ˆ I , and compute 

the probabilities φ = softmax ( 
B 1 
2 

ˆ I ) . 

6: Select a splitting feature randomly according to the multino- 

mial distribution M(φ) . 

7: Calculate the normalized vector ˆ I ( j) for the selected 

splitting feature A j , and compute the probabilities ϕ = 

softmax ( 
B 2 
2 

ˆ I ( j) ) . 

8: Select a splitting value randomly according to the multino- 

mial distribution M(ϕ) . D 

S and D 

E are correspondingly split 

into two disjoint subsets D 

S l , D 

S r and D 

E l , D 

E r , respectively. 

9: T .l e f tchil d ← MT ree (D 

S l , D 

E l , k, B 1 , B 2 ) 

10: T .r ightchild ← MT ree (D 

S r , D 

E r , k, B 1 , B 2 ) 

11: end if 

12: Conduct M(ψ) -based label selection for each leaf. 

13: Return: A decision tree T in MRF 
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• Randomly select a label for each leaf L according to the multi- 

nomial distribution M(ψ) as its representative. 

In summary, the training process is summarized in Algorithm 1 . 

.3. Prediction 

Similar to [1] , given an unlabeled sample X , we can easily know 

hich leaf of a tree h it falls. The prediction of X , i.e. , the h (X ) ,

s the representative label in that leafdetermined in the training 

rocess. 

Suppose MRF contains t trees, the final prediction 

ˆ Y of X by 

RF is the majority vote over all trees, which is the same as the 

ne used in [1] : 

ˆ 
 = arg max 

c∈{ 1 , ··· ,K} 

t ∑ 

i =1 

I 

{
h 

(i ) (X ) = c 
}
, (5) 

here h (i ) (X ) is the prediction of X by the tree h (i ) . Note that if

ultiple labels achieve the same votes, we break ties by choosing 

ne of them randomly. 

. Consistency and privacy analysis of MRF 

In this section, we analyze the consistency and privacy- 

reservation of the proposed MRF. Note that all proofs are shown 

n Section Appendix A . 

.1. Consistency 

In this section, we first describe the definition of consistency 

nd two previously proven necessary lemmas, then state two new 

emmas and the consistency theorem. 

efinition 3. Let D denotes the training set consisting n i.i.d. ob- 

ervations, the classifier h is consistent if its probability of error L 

atisfies 

 (L ) = Pr (h (X , Z, D) � = Y ) → L ∗, as n → ∞ , 

here (X, Y ) is a random test point, L ∗ denotes the Bayes risk, Z

enotes the randomness involved in the construction of the tree, 

uch as the selection of candidate features. 
4 
emma 1. The voting classifier h (t) which takes the majority vote 

ver t individually trained classifiers { h (i ) } t 
i =1 

(with the same struc- 

ure h and different randomizing variables) has consistency if the clas- 

ifier h is consistent. 

emma 2. Consider a partitioning classification rule building a pre- 

iction by a majority vote method in each leaf node. If the labels of 

he voting data have no effect on the structure of the classification 

ule, then E [ L ] → L ∗ as n → ∞ , when 

1. The diameter of N (X ) → 0 as n → ∞ in probability, 

2. |N 

E (X ) | → ∞ as n → ∞ in probability, 

where N (X ) is the leaf containing X , |N 

E (X ) | is the number of

stimation points in N (X ) . 

Lemma 1 [10] states that the consistency of individual tree 

eads to the consistency of athe forest. Lemma 2 [41] implies that 

he consistency of a tree can be ensured that as every hypercube 

t a leaf is sufficiently small while contains infinite number of es- 

imation points n → ∞ . 

To prove the consistency based on Lemmas 1 –2 , there are three 

ain steps, including ensuring that (1) each feature has a non-zero 

robability to be selected, (2) each split reduces the expected size 

f the splitting feature, and (3) split process can go on indefinitely. 

n the following part, we first propose two lemmas for steps (1) 

nd (2) , respectively, and then describe the consistency theorem of 

he MRF. 

emma 3. In the MRF, the probability that any given feature A is se- 

ected to split at each node has lower bound P 1 > 0 if the introduced

yper-parameter B 1 for splitting feature selection is upper-bounded. 

emma 4. Suppose that features are all supported on [0,1]. In the 

RF, once a splitting feature A is selected, if this feature is divided 

nto N(N ≥ 3) equal partitions A 

(1) , · · · , A 

(N) from small to large ( i.e. ,

 

(i ) = 

[
i −1 
N , i 

N 

]
) and the introduced hyper-parameter B 2 for splitting 

alue selection is upper-bounded, for any split point v , 

 P 2 (P 2 > 0) , s . t . Pr 

( 

v ∈ 

N−1 ⋃ 

i =2 

A 

(i ) | A 

) 

≥ P 2 . 

Lemma 3 states that the MRF fulfills the first aforementioned 

equirement. Lemma 4 states that second condition is also met by 

howing that the specific splitting value has a large probability that 

t is not near the two endpoints of the feature interval. 

heorem 1. Suppose that X is supported on [0 , 1] D and has non- 

ero density almost everywhere, the cumulative distribution function 

f the split points is right-continuous at 0 and left-continuous at 1. 

f B 3 → ∞ while B 1 and B 2 are upper-bounded, where B 1 , B 2 , and

 3 are introduced hyper-parameters for the splitting feature selection, 

plitting value selection, and label selection, respectively, MRF is con- 

istent when k → ∞ and k/n → 0 as n → ∞ . 

.2. Privacy-preservation 

In this part, we prove that the MRF satisfies ε-differential pri- 

acy based on two composition properties [42] . Suppose we have 

 set of privacy mechanisms M = {M 1 , . . . , M p } and each M i pro-

ides εi privacy guarantee, then the sequential composition and 

arallel composition are described as follows: 

roperty 1 (Sequential Composition) . Suppose M = {M 1 , . . . , M p } 
re sequentially performed on a dataset D, then M will provide 

 

∑ p 
i =1 

εi ) -differential privacy. 

roperty 2 (Parallel Composition) . Suppose M = {M 1 , . . . , M p } 
re performed on a disjointed subsets of the entire dataset, 
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Table 1 

The description of UCI benchmark datasets. 

Dataset Samples Features Classes Dataset Samples Features Classes 

Zoo 101 17 7 Banknote 1,372 4 2 

Hayes 132 5 3 Cmc 1,473 9 3 

Echo 132 12 2 Yeast 1,484 8 10 

Hepatitis 155 19 2 Car 1,728 6 4 

Wine 178 13 3 Image 2,310 19 7 

Wdbc 569 39 2 Chess 3,196 36 2 

Transfusion 748 5 2 Ads 3,729 1,558 2 

Vehicle 946 18 4 Wilt 4,839 5 2 

tic-tac-toe 958 9 2 Wine-Quality 4,898 11 7 

Mammo 961 6 2 Phishing 11,055 31 2 

Messidor 1,151 19 2 Nursery 12,960 9 5 

Website 1,353 9 3 Connect-4 67,557 42 3 

i  

d

L

t

p

L

s

d

L  

d

o

T

t  

B  

t

5

M

t

t

s

d

i

w

R

p

p

t

5

[

w

t

a

d

s

[  

l

R

w

t

p

B

t

e

t

t

g

t

w

B

N

i  

i

i

l  

f

t

s

o  

a

t

i

C

c

C

C

d

B

o

k

R

i

p

t

o

p

i

t

t

i

5

c

p

3 https://github.com/dgriffiths3/ml _ segmentation 
.e. , {D 1 , . . . , D p } , respectively, then M will provide ( max { εi } p i =1 
) -

ifferential privacy. 

emma 5. The impurity-based multinomial distribution M (φ) of fea- 

ure selection is essentially the exponential mechanism of differential 

rivacy, and satisfies B 1 -differential privacy. 

emma 6. The impurity-based multinomial distribution M (ϕ) of 

plitting value selection is essentially the exponential mechanism of 

ifferential privacy, and satisfies B 2 -differential privacy. 

emma 7. The label selection of each leaf in a tree satisfies B 3 -

ifferential privacy. 

Based on the aforementioned properties and lemmas, we can 

btain the following theorem: 

heorem 2. The proposed MRF satisfies ε-differential privacy when 

he hyper-parameters B 1 , B 2 and B 3 satisfy B 1 + B 2 = ε/ (d · t) and

 3 = ε/t , where t is the number of trees, d is the depth of a tree such

hat d � O( |D E | 
k 

) , and k is the minimum leaf size. 

. Experiments 

In this section, we empirically analyze the performance of our 

RF. Specifically, we compare the proposed MRF with four consis- 

ent RF variants and Breiman’s RF [1] on the UCI datasets and in 

he semantic segmentation task in Section 5.1 and Section 5.2 , re- 

pectively. In Section 5.3 , we present the performance of MRF with 

ifferent privacy budgets to show the trade-off between the learn- 

ng accuracy and the level of privacy preservation. In Section 5.4 , 

e further compare the performance of MRF with some advanced 

F variants, which have no properties of consistency or privacy 

reservation. In Section 5.5 , we provide more discussions of the 

roposed MRF, including the effect of the proposed splitting rule, 

he effect of hyper-parameters, and computational complexity. 

.1. Performance on UCI datasets 

Dataset Selection . Similar to previous consistent RF works 

12,13,29] , we conduct experiments on twenty-four UCI datasets, 

hich cover a wide range of sample size and feature dimensions 

o be representative for evaluating the performance of different 

lgorithms. Besides, we have no additional preprocessing for the 

atasets except for replacing the missing values with ‘-1’. The de- 

cription of used datasets is shown in Table 1 . 

Baseline Selection . We compare MRF with Denil14 [12] , BRF 

13] , CompRF [29] , and the standard RF ( Breiman ) [1] in the fol-

owing evaluations [12,13,29] . are recent works about the consistent 

F. Note that except for the consistent variant (CompRF-C) in [29] , 

e also evaluate its inconsistent version, denoted as CompRF-I. Al- 

hough the Breiman’s RF [1] cannot meet the consistency, we also 

rovide its results as an important baseline for comparison. 
5 
Specifically, there are two main differences between MRF and 

reiman’s RF: (1) MRF uses the structure/estimation points parti- 

ion for the training set while Breiman’s RF adopts bootstrap strat- 

gy and (2) MRF uses the proposed Multinomial distributions split- 

ing rule while Breiman’s RF adopts deterministic greedy split- 

ing rule. To analyze which component contributes more to the 

ood performance of our MRF, we also compare Breiman’s RF with 

he structure/estimation points partition (dubbed Breiman +SE) and 

ith the multinomial distributions based splitting rule (dubbed 

reiman +M). 

Training Setup . We use the random generator implemented by 

umPy [44] to ensure the diversity of each tree in all forests. Sim- 

lar to the settings in [13] , we carry out 10 times 10-fold cross val-

dation to generate 100 forests for each method to alleviate the 

nfluence of randomness. All forests have t = 100 trees, minimum 

eaf size k = 5 . Gini index is used as the impurity measure except

or CompRF. In Denil14 , BRF, CompRF, and RF, we set the size of 

he set of candidate features to 
√ 

D . The partition rate of all con- 

istent RF variants is set to 1. All settings stated above are based 

n [12,13] . In MRF, we set B 1 = B 2 = 10 and B 3 → ∞ in all datasets,

nd other hyper-parameters of baseline methods are set according 

o their paper. 

Results . As shown in Table 2 , MRF significantly exceeds all ex- 

sting consistent RF variants, including Denil14 , BRF, and CompRF- 

. For example, MRF achieves more than 2% improvement in most 

ases, compared with the state-of-the-art consistent method BRF. 

ompared to the CompRF-I which is the inconsistent version of 

ompRF-C, our method achieves higher accuracy on twenty-two 

atasets. Besides, the performance of the MRF even surpasses 

reiman’s original RF on fourteen datasets, where the advantage 

f the MRF is statistically significant on eleven. To the best of our 

nowledge, this has never been achieved by any other consistent 

F variants. Moreover, our method achieves a high average rank- 

ng, which further verifies that the performance of MRF is com- 

arable with the Breiman’s RF. Note that we have not fine-tuned 

he hyper-parameters such as B 1 , B 2 , B 3 and t . The performance 

f the MRF might be further improved with the tuning of these 

arameters, which would bring additional computational complex- 

ty. Moreover, the performance of the Breiman +M is better than 

hat of the Breiman +SE in most cases. It shows that our new split- 

ing rule contributes more than the structure/estimation partition 

n improving the performance of MRF. 

.2. Performance in semantic segmentation 

Task Description . We treat the segmentation as a pixel-wise 

lassification and build the dataset based on aerial images 3 . Each 

ixel of these images are labeled for one of two semantic classes: 

https://github.com/dgriffiths3/ml_segmentation
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Table 2 

Accuracy (%) of different RFs on benchmark UCI datasets. 

Dataset Denil14 BRF CompRF-C MRF CompRF-I Breiman Breiman + SE Breiman + M 

Zoo 80.00 85.00 87.69 90.64 † 93.39 87.38 90.95 96.64 

Hayes 50.93 45.35 45.82 79.46 † 46.04 77.58 79.04 84.09 

Echo 78.46 88.46 89.63 91.72 † 88.09 90.64 91.97 90.52 

Hepatitis 62.17 63.46 62.50 64.32 58.33 64.05 65.60 60.74 

Wine 96.80 96.78 71.38 97.58 74.37 97.51 97.81 97.92 

Wdbc 92.86 95.36 92.39 95.78 94.26 96.01 95.29 96.52 

Transfusion 72.97 77.70 76.53 78.53 75.28 79 . 52 • 78.41 74.51 

Vehicle 68.81 71.67 59.68 73.54 64.86 74 . 70 • 73.16 75.47 

Tic-tac-toe 84.07 79.64 74.53 98.01 † 77.81 87.97 97.76 98.92 

Mammo 79.17 81.25 76.57 81.86 78.72 82 . 31 • 82.06 80.02 

Messidor 65.65 65.21 65.62 67.14 66.14 68 . 35 • 66.90 68.46 

Website 85.29 85.58 85.98 89.80 † 88.34 88.12 90.03 90.04 

Banknote 98.29 98.32 99.36 99.49 † 99.02 99.12 99.02 99.67 

Cmc 53.60 54.63 53.93 56.12 † 54.61 55.11 55.97 53.42 

Yeast 58.80 58.38 14.15 61.03 10.66 61.71 61.06 60.96 

Car 88.02 93.43 79.07 96.30 92.17 97 . 42 • 96.42 97.47 

Image 95.45 96.06 93.99 97.47 96.16 97.71 97.07 98.31 

Chess 61.32 97.12 94.77 99.25 † 97.49 98.72 99.04 99.49 

Ads 85.99 94.43 96.05 96.76 96.44 97 . 59 • 96.84 97.94 

Wilt 97.16 97.25 97.23 98.56 98.27 98.10 97.83 98.57 

Wine-Quality 57.31 56.68 53.22 60.56 55.06 64 . 78 • 61.15 69.81 

Phishing 94.35 94.47 95.44 96.07 † 96.45 95.56 96.21 97.19 

Nursery 93.42 93.52 91.01 99.28 † 95.67 96.89 98.61 99.78 

Connect-4 66.19 76.75 72.82 81.46 † 76.27 80.05 81.54 84.02 

Average Rank 6.83 5.83 6.71 2.75 5.58 3.08 3.00 2.21 

1. We carry out Wilcoxon’s signed-rank test [43] to test for the difference between the results from the MRF and the 

standard RF at significance level 0.05. 2. Among the four consistent RF variants, the best result is indicated in boldface. 

3. ”† ” indicates MRF is significantly better than the standard RF. 4. ”•” indicates the standard RF is significantly better 

than MRF. 5. The last line shows the average rank of different methods across all datasets. 

Fig. 3. Comparison of different RFs on the pixel-wise classification task with two metrics: the pixel-wise accuracy (PA) and the intersection over union (IOU). The higher the 

PA and IOU, the better the performance. The standard deviation is indicated by the error bar. 
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uilding or not building . Except for the RGB values of each pixel, 

e also construct some other widely used features. Specifically, we 

dopt local binary pattern [45] with radius 24 to characterize tex- 

ure, and calculate eight Haralick features [46] (including angular 

econd moment, contrast, correlation, entropy, homogeneity, mean, 

ariance, and standard deviation). We sample 10,0 0 0 pixels with- 

ut replacement for training, and test the performance on the test 

mage. To reduce the effect of randomness, we repeat the exper- 

ments 5 times with different training set assignments. To evalu- 

te the performance, we adopt two classical metrics, including the 

ixel-wise accuracy (PA) and intersection over union (IoU). Besides, 

ll settings are the same as the descriptions in Section 5.1 . 

Results . As shown in Fig. 3 , the performance of MRF is better

han that of RF. Compare with existing consistent RF, the improve- 

ent of MRF is more significant. Besides, Breiman +M is better than 

reiman +SE in terms of both PA and IOU, which further verify the 

ffectiveness of the proposed splitting rule. We also visualize the 

egmentation results of MRF, as shown in Fig. 4 . Although the per- 
6 
ormance of MRF may not be as good as some state-of-the-art deep 

earning based methods, it still achieves plausible results. 

.3. Performance of differential privacy 

In this section, we investigate the performance of privacy- 

reservation for the proposed MRF. We conduct experiments to 

ompare MRF with a recent RF variant [35] (denoted as SmoothRF), 

n terms of the privacy budget ε and the number of trees t , re- 

pectively. Specifically, for our MRF scheme, based on Theorem 2 , 

iven the fixed privacy budget ε, we set B 1 = B 2 = ε/ 2(d · t) and

 3 = ε/t , where t is the number of trees and d is the depth of

 tree. Besides, we observe that the value of d constructed based 

n selected datasets is no more than 10, therefore we directly set 

 = 10 for simplicity. We implement the SmoothRF [35] based on 

he open-source code 4 with the default setting. 
4 https://github.com/sam-fletcher/Smooth _ Random _ Trees 

https://github.com/sam-fletcher/Smooth_Random_Trees
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Fig. 4. Visualization result of the proposed MRF. (a) : Aerial image; (b) : Groud-truth; (c) : The heat map of the prediction. The pixel is predicted as within the building area 

if and only if its color is red in the heat map. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

(a) WINE (b) TRANSFUSION

(c) WEBSITE (d) BANKNOTE

(e) CMC (f) YEAST

(g) WILT (h) WINE-QUALITY

Fig. 5. Comparison between MRF and SmoothRF with different privacy budgets ε and the number of trees on eight datasets. 

7 
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Table 3 

Accuracy (%) of compared advanced RFs and our MRF on UCI datasets. 

Dataset RoF-PCA RoF-LDA MPSVM-T MPSVM-P MPSVM-N HobRaF MRF 

Zoo 89.58 88.10 • 82.38 • 88.69 • 82.61 • 95.35 † 90.64 

Hayes 70.79 • 72.29 • 65.64 • 65.02 • 60.77 • 79.27 79.46 

Echo 92.15 91.16 84.72 • 91.46 85.71 • 90.45 • 91.72 

Hepatitis 65.23 † 65.83 63.40 63.87 64.53 63.95 64.32 

Wine 96.21 • 98.15 † 97.47 97.58 96.23 • 98.41 † 97.58 

Wdbc 95.51 97.20 † 96.87 † 96.59 97.14 † 96.99 † 95.78 

Transfusion 77.95 78.39 78.64 78.88 77.22 • 76.70 • 78.53 

Vehicle 76.04 † 78.77 † 75.76 † 75.10 † 72.69 79.15 † 73.54 

Tic-tac-toe 86.35 • 85.34 • 83.49 • 84.81 • 81.34 • 92.01 • 98.01 

Mammo 82.80 † 82.56 † 82.48 † 82.52 † 82.65 † 81.48 81.86 

Messidor 74.95 † 74.74 † 73.70 † 72.36 † 73.26 † 74.50 † 67.14 

Website 87.69 • 88.18 • 86.01 • 87.23 • 85.22 • 89.49 89.80 

Banknote 99.97 99.84 99.91 99.90 99.93 99.91 99.49 

Cmc 55.14 • 54.73 • 54.52 • 54.49 • 51.97 • 53.72 • 56.12 

Yeast 61.20 61.32 55.35 • 61.43 41.88 • 62.05 † 61.03 

Car 95.69 • 96.00 91.37 • 95.35 • 86.42 • 97.86 † 96.30 

Image 97.26 97.34 96.46 • 97.10 93.68 • 98.12 † 97.47 

Chess 98.10 • 98.22 • 93.82 • 97.75 • 82.38 • 98.94 99.25 

Ads 97.13 96.74 89.13 • 97.33 † 86.60 • 97.45 † 96.76 

Wilt 98.56 98.61 98.21 98.11 • 98.24 98.17 98.56 

Wine-Quality 64.19 † 64.26 † 59.30 63.82 † 44.88 • 71.27 † 60.56 

Phishing 95.81 95.60 95.04 • 95.42 94.54 • 96.74 † 96.07 

Nursery 97.13 • 96.35 • 94.26 • 97.01 • 92.09 • 98.50 99.28 

Connect-4 77.56 • 76.83 • 65.83 • 76.73 • 65.83 • 87.40 † 81.46 

Average Rank 3.21 3.17 5.33 4.46 5.83 2.75 3.25 

1. We carry out Wilcoxon’s signed-rank test [43] to test for the difference between the results from the 

MRF and other RF variants at significance level 0.05. 2. ”•” indicates MRF is significantly better than this 

method. 3. ”† ” indicates this method is significantly better than MRF. 4. The last line shows the average 

rank of different methods across all datasets. 

{  

F

S

v

w

r

f

c

p

5

p

M

[

r

m

d

s

r

i

i

u

t

t

e

m

s

w

s

z

i

c

m

5

5

w

t

a

d

o

t

v

t

w

o

o

5

f

r

t

m

i

b

a

To show the performance of both methods, we set ε ∈ 

 0 . 1 , 0 . 5 , 1 } and t ∈ { 1 , 2 , 4 , 8 , 16 , 32 , 64 } , respectively. As shown in

ig. 5 , the MRF can achieve better performance compared with the 

moothRF in terms of different ε and t . Specifically, when the pri- 

acy budget ε is relatively small, the added noise is relatively high 

hich results in performance degradation. In contrast, when ε is 

elatively big, the added noise is relatively low, and thus theper- 

ormance will increase. Besides, when the number of trees t in- 

reases, the performance of MRF increases significantly, while the 

erformance of SmoothRF decreases significantly. 

.4. Comparison with advanced random forest variants 

Besides the comparison with the consistent and privacy- 

reservation RFs, we also conduct experiments to compare the 

RF with some advanced RFs, including rotation random forests 

18] and oblique random forests [21,22] . Specifically, there are two 

otation RFs ( i.e. , RoF-PCA and RoF-LDA) with different transfor- 

ations, including principal component analysis (PCA) and linear 

iscriminate analysis (LDA). We present the results of three multi- 

urface proximal support vector machine (MPSVM) based oblique 

andom forests [21] , i.e. , MPSVM-based RFs with Tikhonov regular- 

zation (MPSVM-T), MPSVM-based RFs with axis-parallel regular- 

zation (MPSVM-P), and MPSVM-based RFs with NULL space reg- 

larization (MPSVM-N). We implement the above methods using 

he open-source code 5 . We also compare with a recent method 

hat employs linear classifiers at each non-leaf node, namely, het- 

rogeneous oblique random forest (HobRaF) [22] . HobRaF is imple- 

ented based on its open-sourced codes 6 . Other settings are the 

ame as those used in Section 5.1 . 

As shown in Table 3 , HobRaF achieves remarkable performance 

ith the best average rank. Nevertheless, the performance of MRF 
5 https://drive.google.com/file/d/0B9nwWnaaZcNWZGFuRnZYTlR2LVk/view?usp= 

haring 
6 https://github.com/P- N- Suganthan/CODES/blob/master/2020- PRJ- Het- ob- RaF. 
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8 
s still on par with that of the HobRaF. Besides, MRF has theoretical 

onsistency and privacy-preservation property, which is the main 

erit of the proposed method. 

.5. Discussions 

.5.1. Results of RFs under optimal hyper-parameters 

To keep in line with previous works [1,12,13] , we compare MRF 

ith all baseline methods under their default settings. However, 

hese parameters may not be optimal for each dataset. To provide 

 more comprehensive comparison, we select some representative 

atasets and tune the parameters of all methods to achieve their 

ptimal performance in each dataset based on the grid-search. 

As shown in Table 4 –5 , all methods achieve better performance 

han training without tuning the hyper-parameters, especially ad- 

anced RFs evaluated in Table 5 . In particular, MRF is still better 

han all other consistent RF variants and its performance is on par 

ith Breiman’s RF and other advanced RF variants under the use 

f optimal hyper-parameters. These results verify the effectiveness 

f MRF again. 

.5.2. The effect of B 1 and B 2 
We evaluate the performance of the consistent MRF under dif- 

erent hyper-parameters B 1 and B 2 . Specifically, we consider a 

ange of [0,20] for both B 1 and B 2 , and other hyper-parameters are 

he same as those stated in Section 5.1 . 

Fig. 6 displays the results for six datasets representing small, 

edium and large datasets. It shows that the performance of MRF 

s significantly improved as B 2 increases from zero, and it further 

ecomes relatively stable when B 2 ≥ 10 . Similarly, the performance 

lso improves as B 1 increases from zero, but the effect is not ob- 

ious. When B 2 is too small, the resulting multinomial distribu- 

ions would allow too much randomness, leading to the poor per- 

ormance of the MRF. Besides, as shown in the figure, although the 

ptimal values of B 1 and B 2 may depend on the specific character- 

stics of a dataset, such as the outcome scale and the dimension of 

https://drive.google.com/file/d/0B9nwWnaaZcNWZGFuRnZYTlR2LVk/view?usp=sharing
https://github.com/P-N-Suganthan/CODES/blob/master/2020-PRJ-Het-ob-RaF.zip
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Table 4 

Accuracy (%) of consistent RFs and Breiman’s RF with optimal hyper-parameters. 

Dataset Denil14 BRF CompRF-C MRF CompRF-I Breiman Breiman + SE Breiman + M 

Hayes 66.62 62.52 45.82 82.28 46.86 80.53 80.12 85.70 

Echo 91.66 91.75 89.93 92.11 90.17 92.14 92.00 91.90 

Hepatitis 64.03 65.66 62.50 66.72 60.26 65.06 67.77 64.77 

Vehicle 72.96 72.34 62.57 73.75 64.94 74.97 73.45 75.93 

Yeast 59.84 59.09 16.17 61.79 11.16 62.03 61.81 62.60 

Wilt 97.72 97.66 97.76 98.56 98.43 98.30 97.90 98.83 

Table 5 

Accuracy (%) of advanced RFs and our MRF with optimal hyper-parameters. 

Dataset RoF-PCA RoF-LDA MPSVM-T MPSVM-P MPSVM-N HobRaF MRF 

Hayes 80.92 80.62 74.46 79.38 70.77 80.31 82.28 

Echo 92.92 92.00 91.08 92.31 90.77 91.38 92.11 

Hepatitis 68.27 67.47 65.87 66.67 65.60 64.00 66.72 

Vehicle 81.08 84.92 81.88 78.70 74.60 83.47 73.75 

Yeast 64.19 65.47 60.59 64.64 57.88 62.39 61.79 

Wilt 98.76 98.80 98.83 98.80 98.69 98.71 98.56 

Fig. 6. Accuracy (%) of the MRF under different hyper-parameter values. 
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he impurity decrease vector, at our default setting ( B 1 = B 2 = 10 ),

he MRF achieves competitive performance in all datasets. 

.5.3. Computational complexity analysis 

For a given dataset, we suppose that its feature dimension is D 

nd it consists of n samples. In the best case the depth would be

( log n ) for a balanced binary tree, the theoretical computational 

omplexity of constructing a tree would be O(D · n log n ) . Because 

he complexity of the RF is the summation of the complexities of 

onstructing individual trees, the complexity of MRF with t trees 

hould be O(t · D · n log n ) . Note that this analysis ignores the com-

utational time involved in selecting the splitting feature and value 

or each node. 

. Conclusion and future work 

In this paper, we proposed a novel random forest framework, 

ubbed multinomial random forest (MRF), based on which we ana- 

yzed its consistency and privacy-preservation. In the MRF, we pro- 

osed two impurity-based multinomial distributions for the selec- 

ion of splitting feature and splitting value, respectively. Accord- 

ngly, the best split point has the highest probability to be cho- 

en, while other candidate split points that are nearly as good as 

he best one will also have a good chance to be selected. This split
9 
rocess is more reasonable compared with the greedy splitting cri- 

erion used in existing methods. Besides, we also introduced an- 

ther exponential mechanism of differential privacy for selecting 

he label of a leaf to discuss the privacy-preservation of MRF. Ex- 

eriments and comparisons demonstrated that the MRF surpassed 

xisting consistent random forest variants, and its performance is 

n par with advanced random forests. It is by far the first random 

orest variant that is consistent and has comparable performance 

o the standard random forest simultaneously. 

For future work, although our MRF achieves the best per- 

ormance among all consistent RFs, it can not always surpass 

reiman’s RF. Therefore, how to obtain a significantly better RF in 

heory and practice is still an open problem. Besides, in this pa- 

er, the MRF is designed only for classification tasks. We will fur- 

her explore how to extend the proposed MRF in regression tasks 

n our future work. Moreover, the proposed multinomial distribu- 

ion based randomization strategy is only explored in RFs. We will 

xplore whether it is also effective in improving other algorithms 

ith the deterministic selection process. 
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By (C.3) and (C.7) , the theorem is proved. �
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ppendix A. The Proof of Lemma 3 

roof. Recall that the normalized impurity decrease vector ˆ I ∈ 

0 , 1] D . When 

ˆ I = (1 , 0 , · · · , 0) , the probability that the first feature

s selected for splitting is the largest, and when 

ˆ I = (0 , 1 , · · · , 1) ,

he probability reaches smallest. Therefore 

 1 � 

1 

1 + (D − 1) e B 1 
≤ Pr ( v ∈ A ) ≤ e B 1 

e B 1 + (D − 1) 
. 

�

ppendix B. The Proof of Lemma 4 

roof. Suppose m is the number of possible splitting values of fea- 

ure A , similar to Lemma 3 , the probability that a value is selected

or splitting satisfies the following restriction: 

1 

1 + (m − 1) e B 2 
≤ Pr (v ) ≤ e B 2 

e B 2 + (m − 1) 
. (B.1) 

In this case, 

r 
(
v ∈ 

⋃ N−1 
i =2 A 

(i ) | A 

)
= 

∫ 
⋃ N−1 

i =2 A (i ) 

f (v ) dv ∫ 
A 

f (v ) dv 

lim 

m → + ∞ 

⎛ 

⎜ ⎝ 

∫ 
⋃ N−1 

i =2 A (i ) 

1 

1 + (m − 1) e B 2 
dv 

∫ 
A 

e B 2 

e B 2 + (m − 1) 
dv 

⎞ 

⎟ ⎠ 

 lim 

m → + ∞ 

N − 2 

N 

· e B 2 + (m − 1) 

e B 2 + (m − 1) e 2 B 2 
 

N−2 
N 

e −2 B 2 � P 2 . 

(B.2) 

�

ppendix C. The Proof of Theorem 1 

roof. When B 3 → ∞ , the prediction in each node is based on ma-

ority vote, therefore it meets the prerequisite of Lemma 2 . Ac- 

ordingly, we can prove the consistency of MRF by showing that 

t meets two requirements in Lemma 2 . 

Firstly, since MRF requires |N 

E (X ) | ≥ k where k → ∞ as n → ∞ ,

N 

E (X ) | → ∞ when n → ∞ is trivial. 

Let V m 

(a ) denote the size of the a -th feature of N m 

(X ) , where X

alls into the node N m 

(X ) at m -th layer. To prove diam (N (X )) →
 in probability, we only need to show that E (V m 

(a )) → 0 for all 

 a ∈ A . For a given feature A a , let V ∗m 

(a ) denote the largest size of

his feature among all children of node N m −1 (X ) . By Lemma 4 , we

an obtain 
10 
 (V ∗m (a )) ≤ (1 − P 2 ) V m −1 (a ) + P 2 
N − 1 

N 

V m −1 (a ) = 

(
1 − 1 

N 

P 2 

)
V m −1 (a ) . 

(C.1) 

By Lemma 3 , we can know 

 (V m 

(a )) ≤ (1 − P 1 ) V m −1 (a ) + P 1 E (V 

∗
m 

(a )) = 

(
1 − 1 

N 

P 1 P 2 

)
V m −1 (a )

(C.2) 

ince V 0 (a ) = 1 , 

 (V m 

(a )) ≤
(

1 − 1 

N 

P 1 P 2 

)m 

. (C.3) 

Unlike the deterministic rule in the Breiman , the splitting point 

ule in our proposed MRF has randomness, therefore the final se- 

ected splitting point can be regarded as a random variable W i (i ∈ 

 1 , · · · , m } ) , whose cumulative distribution function is denoted by

 W i 
. 

Let M 1 = min (W 1 , 1 − W 1 ) denotes the size of the root smallest

hild, we have 

r (M 1 ≥ σ 1 /m ) = Pr (σ 1 /m ≤ W 1 ≤ 1 − σ 1 /m ) = F W 1 
(1 − σ 1 /m ) − F W 1 

(σ 1 /m ) . 

(C.4) 

Without loss of generality, we normalize the values of all at- 

ributes to the range [0 , 1] for each node, then after m splits, the

mallest child at the m -th layer has the size at least σ with the 

robability at least 

m 

 

i =1 

(
F W i 

(1 − σ 1 /m ) − F W i 
(σ 1 /m ) 

)
. (C.5) 

Since F Wi is right-continuous at 0 and left-continuous at 1, 

 α1 > 0 , ∃ σ, α > 0 s.t. 

m 

 

i =1 

(
F W i 

(1 − σ 1 /m ) − F W i 
(σ 1 /m ) 

)
> (1 − α1 ) 

m > 1 − α. 

Since the distribution of X has a non-zero density, each node 

as a positive measure with respect to μX . Defining 

p = min 

N : a node at m −th level 
μX (N ) , 

e know p > 0 since the minimum is over finitely many nodes and 

ach node contains a set of positive measure. 

Suppose the data set with size n , the number of data points 

alling in the node A , where A denotes the m -th level node with

easure p, follows Binomial (n, p) . Note that this node A is the one

ontaining the smallest expected number of samples. WLOG, con- 

idering the partition rate = 1 , the expectation number of estima- 

ion points in A is np/ 2 . From Chebyshevs inequality, we have 

r 
(|N 

E (X ) | < k 
)

= Pr 
(|N 

E (X ) | − np 
2 

< k − np 
2 

)
Pr 

(∣∣|N 

E (X ) | − np 
2 

∣∣ > 

∣∣k − np 
2 

∣∣) ≤ np(1 −p) 
2 | k − np 

2 | 2 
 

p(1 −p) 

2 n | k n − p 
2 | 2 

, 

(C.6) 

here the first inequality holds since k − np 
2 is negative as n → ∞ 

nd the second one is by Chebyshev’s inequality. 

Since the right hand side goes to zero as n → ∞ , the node con-

ains at least k estimation points in probability. By the stopping 

ondition, the tree will grow infinitely often in probability, i.e. , 

 → ∞ . (C.7) 
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each tree satisfies B -differential privacy. �
ppendix D. The Proof of Lemma 5 

roof. As we all know, the softmax function is 

f (x ) j = 

exp 

(
z j 

)
∑ D 

i =1 exp ( z i ) 
. 

bviously, the above formula is the same as the exponential mech- 

nism (see the formula (2) in Definition 2 ). In what follows, we 

rove M (φ) satisfies B 1 -differential privacy. 

For any two neighboring datasets D 

S and D 

′ S , and any selected 

eature A ∈ A , we can obtain 

exp 

(
B 1 ̂ I (D S ,A ) 

2 

)
exp 

(
B 1 ̂ I ( D ′ S ,A ) 

2 

) = exp 

⎛ 

⎝ 

B 1 

(
ˆ I (D 

S , A ) − ˆ I ( D 

′ S , A ) 
)

2 

⎞ 

⎠ � exp 

(
B 1 

2 

)
, 

(D.1) 

here the quality function 

ˆ I (D 

S , A ) represents the a -th item of

he normalized feature vector ˆ I based on the structure points 

ataset D 

S , and through the normalized operation ( i.e. , � ̂

 I = 

ax ∀ A, D S , D ′ S | ̂ I (D 

S , A ) − ˆ I ( D 

′ S , A ) | = 1 ) the corresponding sensitiv-

ty is 1. Accordingly, the privacy of the split feature mechanism 

atisfies that for any output A of M (φ) , we can obtain 

Pr [ M (φ, D 

S ) = A ] 

Pr [ M (φ, D 

′ S ) = A ] 
= 

exp 

(
B 1 

ˆ I (D S ,A ) 
2 

)
∑ 

A ′ ∈A exp 

(
B 1 

ˆ I (D S ,A ′ ) 
2 

)
exp 

(
B 1 

ˆ I ( D ′ S ,A ) 
2 

)
∑ 

A ′ ∈A exp 

(
B 1 

ˆ I ( D ′ S ,A ′ ) 
2 

)

= 

exp 

(
B 1 ̂ I (D S ,A ) 

2 

)
exp 

(
B 1 ̂ I ( D ′ S ,A ) 

2 

) ·
∑ 

A ′ ∈A exp 

(
B 1 ̂ I ( D ′ S ,A ′ ) 

2 

)
∑ 

A ′ ∈A exp 

(
B 1 ̂ I (D S ,A ′ ) 

2 

)

� exp 

(
B 1 

2 

)
·

⎛ 

⎝ 

∑ 

A ′ ∈A exp 

(
B 1 
2 

)
exp 

(
B 1 ̂ I (D S ,A ′ ) 

2 

)
∑ 

A ′ ∈A exp 

(
B 1 ̂ I (D S ,A ′ ) 

2 

)
⎞ 

⎠ 

� exp 

(
B 1 

2 

)
· exp 

(
B 1 

2 

)⎛ 

⎝ 

∑ 

A ′ ∈A exp 

(
B 1 ̂ I (D S ,A ′ ) 

2 

)
∑ 

A ′ ∈A exp 

(
B 1 ̂ I (D S ,A ′ ) 

2 

)
⎞ 

⎠ 

= exp ( B 1 ) . 

herefore, for each layer of a tree, the privacy budget consumed 

y the split mechanism of features is B 1 . That is, M (φ) satisfies

 1 -differential privacy. �

ppendix E. The Proof of Lemma 6 

roof. Similar to the proof of Lemma 5 , the split value selection 

 (ϕ) is essentially the exponential mechanism of differential pri- 

acy. For any two neighboring datasets D 

S and D 

′ S , and any se- 

ected split value a j [ i ] ∈ a j = { a j [1] , . . . , a j [ m ] } of the feature A j , we

an obtain 

exp 

(
B 2 

ˆ I ( j) (D S ,a j [ i ]) 
2 

)

exp 

(
B 2 

ˆ I ( j) ( D ′ S ,a j [ i ]) 
2 

) = exp 

⎛ 

⎝ 

B 2 

(
ˆ I ( j) (D 

S , a j [ i ]) − ˆ I ( j) ( D 

′ S , a j [ i ]) 
)

2 

⎞ 

⎠ � exp 

(
B 2 
2 

)
,

here the quality function 

ˆ I ( j) (D 

S , a j [ i ]) represents the i -th item

f the normalized feature vector ˆ I ( j) based on the structure points 

ataset D 

S , and the corresponding sensitivity is 1 through the nor- 

alized operation. 
11 
Accordingly, for any output a j [ i ] of M (ϕ) , we can obtain 

Pr 
[
M (ϕ, D 

S ) = a j [ i ] 
]

Pr 
[
M (ϕ, D 

′ S ) = a j [ i ] 
] = 

exp 

(
B 2 

ˆ I ( j) (D S ,a j [ i ]) 
2 

)
∑ 

a j [ k ] ∈ A j exp 

(
B 2 

ˆ I ( j) (D S ,a j [ k ]) 
2 

)

exp 

(
B 2 

ˆ I ( j) ( D ′ S ,a j [ i ]) 
2 

)
∑ 

a j [ k ] ∈ A j exp 

(
B 2 

ˆ I ( j) ( D ′ S ,a j [ k ]) 
2 

)

= 

exp 

(
B 2 ̂ I ( j) (D S ,a j [ i ]) 

2 

)
exp 

(
B 2 ̂ I ( j) ( D ′ S ,a j [ i ]) 

2 

) ·
∑ 

a j [ k ] ∈ A j exp 

(
B 2 ̂ I ( j) ( D ′ S ,a j [ k ]) 

2 

)
∑ 

a j [ k ] ∈ A j exp 

(
B 2 ̂ I ( j) (D S ,a j [ k ]) 

2 

)

� exp 

(
B 2 

2 

)
·

⎛ 

⎝ 

∑ 

a j [ k ] ∈ A j exp 

(
B 2 
2 

)
exp 

(
B 2 ̂ I ( j) (D S ,a j [ k ]) 

2 

)
∑ 

a j [ k ] ∈ A j exp 

(
B 2 ̂ I ( j) (D S ,a j [ k ]) 

2 

)
⎞ 

⎠ 

� exp 

(
B 2 

2 

)
exp 

(
B 2 

2 

)⎛ 

⎝ 

∑ 

a j [ k ] ∈ A j exp 

(
B 2 ̂ I ( j) (D S ,a j [ k ]) 

2 

)
∑ 

a j [ k ] ∈ A j exp 

(
B 2 ̂ I ( j) (D S ,a j [ k ]) 

2 

)
⎞ 

⎠ 

= exp ( B 2 ) . 

hus, the selection mechanism of split value for a specific feature 

atisfies B 2 -differential privacy. �

ppendix F. The Proof of Lemma 7 

roof. For any two neighboring datasets D 

E and D 

′ E , and any label 

 ∈ K = { 1 , 2 , . . . , K} of a specific leaf, we can obtain 

exp 

(
B 3 η(D E ,c) 

2 

)
exp 

(
B 3 η( D ′ E ,c) 

2 

) = exp 

⎛ 

⎝ 

B 3 

(
η(D 

E , c) − η( D 

′ E , c) 
)

2 

⎞ 

⎠ � exp 

(
B 3 
2 

)
, (F.1) 

here the quality function η(D 

E , c) represents the empirical prob- 

bility that the leaf has the label c, and thus the corresponding 

ensitive is 1. Then, for any output c ∈ { 1 , 2 , . . . , K} of this leaf, we

an obtain 

Pr [ h (x , D 

E ) = c] 

Pr [ h (x , D 

′ E ) = c] 
= 

exp 

(
B 3 η(D E ,c) 

2 

)
∑ 

c ′ ∈K exp 

(
B 3 η(D E ,c ′ ) 

2 

)
exp 

(
B 3 η( D ′ E ,c) 

2 

)
∑ 

c ′ ∈K exp 

(
B 3 η( D ′ E ,c ′ ) 

2 

)

= 

exp 

(
B 3 η(D E ,c) 

2 

)
exp 

(
B 3 η( D ′ E ,c) 

2 

) ·
∑ 

c ′ ∈K exp 

(
B 3 η( D ′ E ,c ′ ) 

2 

)
∑ 

c ′ ∈K exp 

(
B 3 η(D E ,c ′ ) 

2 

)

� exp 

(
B 3 

2 

)
·

⎛ 

⎝ 

∑ 

c ′ ∈K exp 

(
B 3 
2 

)
exp 

(
B 3 η(D E ,c ′ ) 

2 

)
∑ 

c ′ ∈K exp 

(
B 3 η(D E ,c ′ ) 

2 

)
⎞ 

⎠ 

� exp 

(
B 3 

2 

)
· exp 

(
B 3 

2 

)⎛ 

⎝ 

∑ 

c ′ ∈K exp 

(
B 3 η(D E ,c ′ ) 

2 

)
∑ 

c ′ ∈K exp 

(
B 3 η(D E ,c ′ ) 

2 

)
⎞ 

⎠ 

= exp ( B 3 ) . 

ince each leaf divides the dataset D 

E into disjoint subsets, accord- 

ng to Property 2 , the label selection mechanism for the leaf in 
3 
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ppendix G. The Proof of Theorem 2 

roof. Based on Property 1 together with Lemma 5 and Lemma 6 , 

he privacy budget consumed for each layer of a tree is B 1 + B 2 =
/ (d · t) . Since the depth of a tree is d, the total privacy budget

onsumed by the generation of tree structure is d(B 1 + B 2 ) = ε/t .

ince the datasets D 

S and D 

E are disjoint, according to Property 2 , 

he total privacy budget of a tree is max { d(B 1 + B 2 ) , B 3 } = ε/t . 

As a result, the consumed privacy budget of the MRF contain- 

ng t trees is ε
t · t = ε, which implies that the MRF satisfies ε- 

ifferential privacy. �
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