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Despite the impressive performance of random forests (RF), its theoretical properties have not been thor-
oughly understood. In this paper, we propose a novel RF framework, dubbed multinomial random forest
(MRF), to analyze its consistency and privacy-preservation. Instead of deterministic greedy split rule or
with simple randomness, the MRF adopts two impurity-based multinomial distributions to randomly se-
lect a splitting feature and a splitting value, respectively. Theoretically, we prove the consistency of MRF
and analyze its privacy-preservation within the framework of differential privacy. We also demonstrate
with multiple datasets that its performance is on par with the standard RF. To the best of our knowledge,
MREF is the first consistent RF variant that has comparable performance to the standard RF. The code is
available at https://github.com/jiawangbai/Multinomial-Random-Forest.

© 2021 Published by Elsevier Ltd.

1. Introduction

Random forest (RF) [1] is a popular type of ensemble learn-
ing method. Because of its excellent performance and fast yet effi-
cient training process, RF and other tree-based methods have been
widely used in many fields, such as computer vision [2-4] and data
mining [5-7]. However, due to the inherent bootstrap randomiza-
tion and the highly greedy data-dependent construction process,
it is very difficult to analyze the theoretical properties of RFs [8],
especially for the consistency. Since consistency ensures that the
model goes to optimal under a sufficient amount of data, it is crit-
ical in this big data era.

To address this issue, several RF variants [8-13] were proposed.
Unfortunately, all existing consistent RF variants suffer from rel-
atively poor performance compared with the standard RF due to
two mechanisms introduced for ensuring consistency. On the one
hand, the data partition process allows only half of the training
samples to be used for constructing the tree structure, which sig-
nificantly reduces the performance of consistent RF variants. On
the other hand, extra randomness (e.g., Poisson or Bernoulli dis-
tribution) is introduced, which further hinders the performance.
Accordingly, those mechanisms introduced for theoretical analy-
sis make them difficult to eliminate the performance gap between
consistent RF and standard RF.

* Corresponding author.
E-mail addresses: yang.xue@sz.tsinghua.edu.cn (X
xiast@sz.tsinghua.edu.cn (S.-T. Xia).
1 indicates equal contribution
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Is this gap really impossible to fill? In this paper, we propose a
novel consistent RF framework?, dubbed multinomial random for-
est (MRF), by introducing the randomness more reasonably. In the
MREF, two impurity-based multinomial distributions are used as the
basis for randomly selecting a splitting feature and a specific split-
ting value respectively. Accordingly, the “best” split point has the
highest probability to be chosen, while other candidate split points
that are nearly as good as the “best” one will also have a good
chance to be selected, as shown in Fig. 1. This randomized splitting
process is more reasonable and makes up the accuracy drop with
almost no extra computational costs. Besides, privacy-preservation
is very important in the big data era, especially for machine learn-
ing, due to the continued emergence of privacy breaches and data
abuse. More specifically, data is the huge digital wealth for organi-
zations in machine learning, and attackers may infer or reconstruct
the sensitive training data as much as possible from the public
model. Therefore, protecting data privacy (e.g., prevent unautho-
rized access to training data) is becoming an important aspect in
the development of machine learning. The introduced impurity-
based randomness is essentially an exponential mechanism satisfy-
ing differential privacy, therefore we can also analyze the privacy-
preservation of MRF under the differential privacy framework. To
the best of our knowledge, there is no RF framework could be
adopted to analyze the consistency and privacy-preservation simul-
taneously.

The main contributions of this work are three-fold: (1) we pro-
pose a novel multinomial-based method to improve the greedy

2 In this paper, we focus on the consistency and privacy-preservation in the clas-
sification problem. We will explore the regression task in our future work.
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B Standard RF
B Denill4 & BRF
MRF

Selection Probability

Impurity Decrease

Fig. 1. Splitting criteria of different RFs. The standard RF always chooses the split
point with highest impurity decrease. Denil14 and BRF choose the split point most-
lyin a greedy way, while holding a small or even negligible probability in select-
ing other points randomly. The selection probability in MRF is positively associated
with the impurity decrease. All three RF variants introduce randomness to fulfill the
consistency, where MRF is the most reasonable method.

split process of decision trees; (2) we propose a new RF variant
(i.e., MRF), based on which we analyze its consistency and privacy-
preservation; (3) extensive experiments demonstrate that the per-
formance of MRF is on par with standard RF and is better than
all existing consistent RF variants. To the best of our knowledge,
MREF is the first consistent RF variant that simultaneously has per-
formance comparable to the standard RF.

2. Related work
2.1. Consistent random forests

Random forest (RF) [1] is a distinguished ensemble algorithm,
inspired by the random subspace [14] and random split selection
[15]. The standard RF is built upon bootstrap datasets and split-
ting with the CART methodology [16]. Its various variants, such as
quantile regression forests [17], rotation random forests [18], and
deep forest [19], were proposed for effectiveness, efficiency, and
great interpretability. Especially, the oblique random forests [20-
22], where trees employ a linear combination of features to gen-
erate an oblique hyperplane at each node, can achieve remarkable
performance. RFs were also used in a wide range of applications,
including time series forecasting [23] and visual tracking [24]. De-
spite the success of RFs in practice, their theoretical analysis has
yet been fully established. Breiman [1] showed the first theoret-
ical result indicating that the generalization error is bounded by
the performance of individual tree and the diversity of the whole
forest. Moreover, the relationship between RFs and the nearest
neighbor-based estimator was also studied [25].

One of the important properties, consistency, has yet to be es-
tablished for RFs. Consistency ensures that the result of RF con-
verges to the optimum as the sample size increases, which was
first discussed by Breiman [9]. As an important milestone, Biau
[10] proved the consistency of two directly simplified RFs. Sub-
sequently, several consistent RF variants were proposed for vari-
ous purposes, for example, random survival forests [26], an on-
line version of RF variant [27] and generalized regression forests
[28]. Recently, Haghiri [29] proposed CompRF, whose split process
is relied on triplet comparisons rather than information gain. To
ensure consistency, [8] suggested that an independent dataset is
needed to fit in the leaf. This approach is called the data parti-
tion. Under this framework, [12] developed a consistent RF variant
(called Denili4 in this paper) to narrow the gap between theory
and practice. Following Denil14, [13] introduced the Bernoulli ran-
dom forests (BRF), which reached the state-of-the-art performance.
Besides, Gao et al. [30] discussed the convergence rate of a type of
consistent RF variant most recently.
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Although several consistent RF variants were proposed, due to
the relatively poor performance compared with RF, how to fulfill
the gap between theoretical consistency and the performance in
practice is still an important open question.

2.2. Privacy-preservation

With the growing concerns about privacy, many strategies for
protecting privacy in RFs have been explored in recent years, like
k-anonymity [31] and [-diversity [32]. However, these strategies do
not provide privacy in a mathematically rigorous way. In order to
improve the privacy guarantee, differential privacy (DP) [33], as a
new and promising privacy-preservation model, has been widely
adopted recently, especially for RFs [34-36]. Specifically, due to the
trade-off between privacy and learning accuracy in the DP-based
RFs, most researches considered improving the learning accuracy
by designing allocation strategies of the privacy budget [37,38] or
decreasing the sensitivity [35]. However, in most cases, the learn-
ing accuracy of these schemes is still not satisfactory in practice.

Since we use DP technique to guarantee the privacy of sen-
sitive data, we first outline the basic content of differential pri-
vacy here. Let D = {(X;, Y;)}'; denote a dataset consisting of n i.i.d.
observations, where X; € RP indicates D-dimensional features and
Y; € {1,...,K} indicates the label. Suppose A = {Ay,...,Ap} repre-
sents the feature set. The formal definition of differential privacy is
given as follow:

Definition 1 . (e-Differential Privacy) A randomized mechanism
M gives e-differential privacy for every set of outputs O and any
neighboring datasets D and D’ differing in one record, if M satis-
fies:

Pr{M (D) € 0] < exp (€) - Pr[M(D’) € 0], (1)

where M (D) and M(D’) are the outputs of the mechanism for
input databases D and 7', respectively, Pr is the randomness of
the noise in the mechanism, and € denotes the privacy budget that
restricts the privacy guarantee level of M.

The aim of differential privacy is to mask the differences in
query between neighboring datasets D and D’. Specifically, from
Eq. (1), we can see that a small € (< 1) means that the differ-
ence of mechanism’s output probabilities using D and D’ is small,
which indicates high perturbations of ground truth outputs and
hence high privacy, and vice versa. That is a smaller € represents a
stronger privacy level. The non-private case is given by € = oo.

Besides, according to Definition 1 and the intuition above, the
noise protects the membership of a data point in the dataset. For
example, when conducting a clinical experiment, sometimes a per-
son does not want the observer to know that he or she is involved
in the experiment. This is due to the fact that the observer may
link the test result to the appearance/disappearance of a certain
person and harm the interest of that person. Proper membership
protection would ensure that replacing this person with another
one will not affect the result too much. This property holds only
if the algorithm itself is randomized, i.e., the output is associated
with a distribution. And this distribution will not change too much
if a certain data point is perturbed or even removed. This is exactly
what differential privacy tries to achieve.

Currently, two basic mechanisms, i.e., Laplace mechanism
[39] and exponential mechanism [40], are widely used to realize dif-
ferential privacy. The first one is suitable for numeric queries and
the second one is suitable for non-numeric queries. As presented
in Section 3, in the multinomial random forest (MRF), we need to
choose the splitting feature and splitting value, which belongs to
the non-numeric query. Thus, we adopt the exponential mecha-
nism to preserve privacy. More specifically, suppose that one wants
to publish f(D), and let O denote the set of possible outputs. To
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satisfy €-DP, the exponential mechanism should output values in
O following some probability distribution. Naturally, some values
in O are more desirable than others. For example, the most de-
sirable output is the true value f(D), and one has natural prefer-
ences among other values as well. Specifically, consider a transac-
tional dataset D, and one wants to output the item that appears
most frequently in D. Then O is the set of all items, and between
two items, we prefer to output the one that appears more often.
This preference is encoded using a quality function q : (D, 0) — R,
and without loss of generality, we assume that a higher quality
value indicates better utility. For example, in the most frequent
item case, a natural choice is to define q(D, 0) to be the number
of times the item o appears in D.

Definition 2 (Exponential Mechanism). Let q: (D,0) — R be a
score function of dataset D that measures the quality of output
0 € 0. The exponential mechanism M (D) satisfies €-DP, if it out-

puts o with probability proportional to exp (6‘7@ O)) ie.,

exp (“422)

PrfM (D) =0 (2)
[ ] Zo/eo exp (eq(D [ ))
where Aq is the sensitivity of the quality function, as follows:
Ag = max [q(D,0) - q(D',0)|. 3)
Yo,D,D’

According to Definition 2, we can obtain that the smaller the
privacy budget €, the closer the probability of each output, and
thus the attacker cannot judge the true result. When € = 0, the pri-
vacy protection level is the highest, and all results have the same
probability to be outputted. In addition, given the privacy budget €
and the sensitivity Aq, the higher the value of q(D, 0), the higher
the probability Pr[M (D) = o] of outputting o. That is, when apply-
ing the exponential mechanism, the probability that a low-quality
output is selected is exponentially smaller than that of high-quality
output.

3. Multinomial random forest
3.1. Training set partition

In the MRF, we also replace the bootstrap used in standard RF
with the training set partition, as suggested in [8]. This is neces-
sary for ensuring consistency. Specifically, to build a tree, the train-
ing set D is divided randomly into two non-overlapping subsets D5
and DE, which play different roles (as shown in Fig. 2). D° will be
used to build the tree’s structure, and we call the observations in
this subset the structure points. Once a tree is built, the labels
of its leaves will be re-determined on the basis of another subset
DE, where the corresponding observations are called estimation
points. The ratio of two subsets is parameterized by partition rate

Consistent

o
g

i i Standard

. Training Set
$< Data Partition

Structure Points
M Estimation Points

Fig. 2. An illustration of data partition.
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= |Structure points|/|Estimation points|. To build another tree, the
training set is re-partitioned randomly and independently.

3.2. Tree construction

The construction of a tree relies on a recursive partitioning al-
gorithm. Specifically, to split a node, we introduce two impurity-
based multinomial distributions: one for splitting feature selection
and another for splitting value selection. The specific split point
consists of a pair of a splitting feature and a splitting value. Be-
sides, the impurity decrease at a node u caused by a split point v
is defined as
AP

(DS, v) =
! 2

T(D]

T(DY). (4)

IDSI

where Dj is the subset of D° at a node u, Di’ and Dy’ generated by
splitting D with v, are two subsets in the left child and right child
of the node u, respectively, and T(-) is the impurity criterion (e.g.,
Shannon entropy or Gini index). Unless other specification, we ig-
nore the subscript u of each symbol, and use I to denote (D, v)
for shorthand in the rest of this paper.

Let V = {v;;} denote the set of all possible split points for the
node and [; ; is the corresponding impurity decrease, where v;; is
i-th value on the j-th feature. In what follows, we first introduce
the feature selection mechanism for a node, and then describe
the splitting value selection mechanism corresponding to the se-
lected feature. M(¢p)-based splitting feature selection. We obtain

a vector I=(ly,--- ,Ip) = (max{]n}

where max{l, j} is the largest possible impurity decrease of the

max{IiD}) based on each

1_/'
feature A;. Then. the following three steps need to be performed:

. Ip—minlI )
> maxI-minl )’

o Compute the probabilities ¢ = (¢, ---,¢p) = softmax( D,
where By > 0 is a hyper-parameter related to privacy budget

e Randomly select a feature according to the multinomial distri-
bution M(¢).

« Normalize I: [ = (mgx_zrirr;i;p .

M(¢@) -based splitting value selection. After selecting the fea-
ture A; for a node, we need to determine the corresponding split-
ting value to construct two children. Suppose A; has m possible
splitting values, we need to perform the following steps:

o Normalize I) = (I j.--- . Ijp;) as I¥), where j identifies the
o I; i—minIW) I, i—minIW)
feature A; and IV) = (ma;;(i)—minl(j) P )

« Compute the probabilities ¢ = (@1, --- , ¢m) = softmax(%11),
where B, > 0 is another hyper-parameter related to privacy
budget;

» Randomly select a splitting value based on the multinomial dis-
tribution M(¢).

max 1) —min ()

We repeat the above processes to split nodes until the stopping
criterion is met. The stopping criterion relates to the minimum leaf
size k. Specifically, the number of estimation points is required to
be at least k for every leaf.

M(¥) -based label selection. Once a tree is grown based on
DS, we determine the label of its leafs based on estimation points
DE, as follows:

e Re-determine the predicted probability vector P =
(py,---,pk) according to DE for each leaf £, ie,
pi= ‘2—5‘ Yxyyecr HY =i}, (i=1,--- K), where £F is the
set of estimation points in the leaf £;

o Compute the probabilities ¥ = (Y1, -+, ¥g) = softmax(%ﬂ’)
for each leaf £, where B; > 0 is also a hyper-parameter related
to privacy budget;
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Algorithm 1 Decision Tree Training in MRF: MTree() .

1: Input: Structure points DS, estimation points DE and hyper-

parameters k, By, B, and Bs.

2: Output: A decision tree T in MRF.

3: if |DE| > k then

:  Calculate the impurity decrease of all possible split points
Vij.

5: Sejlect the largest impurity decrease of each feature to cre-
atea vector I, calculate the normalized vector I, and compute
the probabilities ¢ = softmax (5L 1).

6:  Select a splitting feature randomly according to the multino-
mial distribution M(¢).

7. Calculate the normalized vector () for the selected
splitting feature A;, and compute the probabilities ¢ =
softmax(%21(0).

8:  Select a splitting value randomly according to the multino-
mial distribution M(¢). D5 and DE are correspondingly split
into two disjoint subsets D%, DS and DEi, DEr, respectively.

9:  T.leftchild < MTree(D%, D, k, By, By)

10:  T.rightchild < MTree(DSr, DEr k, By, By)

11: end if

12: Conduct M(¥)-based label selection for each leaf.
13: Return: A decision tree T in MRF

Randomly select a label for each leaf £ according to the multi-
nomial distribution M(y) as its representative.

In summary, the training process is summarized in Algorithm 1.
3.3. Prediction

Similar to [1], given an unlabeled sample X, we can easily know
which leaf of a tree h it falls. The prediction of X, i.e., the h(X),
is the representative label in that leafdetermined in the training
process.

Suppose MRF contains ¢ trees, the final prediction Y of X by
MREF is the majority vote over all trees, which is the same as the
one used in [1]:

t
vV _ (i) _
Y= argcewng} Eﬂ{h X) = c}, (5)

where h®(X) is the prediction of X by the tree h®. Note that if
multiple labels achieve the same votes, we break ties by choosing
one of them randomly.

4. Consistency and privacy analysis of MRF

In this section, we analyze the consistency and privacy-
preservation of the proposed MRF. Note that all proofs are shown
in Section Appendix A.

4.1. Consistency

In this section, we first describe the definition of consistency
and two previously proven necessary lemmas, then state two new
lemmas and the consistency theorem.

Definition 3. Let D denotes the training set consisting n i.i.d. ob-
servations, the classifier h is consistent if its probability of error L
satisfies

E(L) =Pr(h(X,Z,D) #Y) — L*, as n — oo,

where (X,Y) is a random test point, L* denotes the Bayes risk, Z
denotes the randomness involved in the construction of the tree,
such as the selection of candidate features.
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Lemma 1. The voting classifier h®) which takes the majority vote
over t individually trained classifiers {h®}_, (with the same struc-
ture h and different randomizing variables) has consistency if the clas-
sifier h is consistent.

Lemma 2. Consider a partitioning classification rule building a pre-
diction by a majority vote method in each leaf node. If the labels of
the voting data have no effect on the structure of the classification
rule, then E[L] — L* as n — oo, when

1. The diameter of N'(X) — 0 as n — oo in probability,
2. INE(X)| » oo as n — oo in probability,

where N (X) is the leaf containing X, |NE(X)| is the number of
estimation points in N (X).

Lemma 1 [10] states that the consistency of individual tree
leads to the consistency of athe forest. Lemma 2 [41] implies that
the consistency of a tree can be ensured that as every hypercube
at a leaf is sufficiently small while contains infinite number of es-
timation points n — oo.

To prove the consistency based on Lemmas 1-2, there are three
main steps, including ensuring that (1) each feature has a non-zero
probability to be selected, (2) each split reduces the expected size
of the splitting feature, and (3) split process can go on indefinitely.
In the following part, we first propose two lemmas for steps (1)
and (2), respectively, and then describe the consistency theorem of
the MRF.

Lemma 3. In the MRF, the probability that any given feature A is se-
lected to split at each node has lower bound P; > 0 if the introduced
hyper-parameter By for splitting feature selection is upper-bounded.

Lemma 4. Suppose that features are all supported on [0,1]. In the
MRF, once a splitting feature A is selected, if this feature is divided
into N(N > 3) equal partitions A1), ..., AN) from small to large (i.e.,
AD =[5, 5]) and the introduced hyper-parameter B, for splitting
value selection is upper-bounded, for any split point v,

N-1
3P, (P, > 0).s.t. Pr{ve | JAVIA) = P
i=2

Lemma 3 states that the MRF fulfills the first aforementioned
requirement. Lemma 4 states that second condition is also met by
showing that the specific splitting value has a large probability that
it is not near the two endpoints of the feature interval.

Theorem 1. Suppose that X is supported on [0, 1]° and has non-
zero density almost everywhere, the cumulative distribution function
of the split points is right-continuous at 0 and left-continuous at 1.
If B3 — oo while By and B, are upper-bounded, where By, B, and
B3 are introduced hyper-parameters for the splitting feature selection,
splitting value selection, and label selection, respectively, MRF is con-
sistent when k — oo and k/n — 0 as n — oo.

4.2. Privacy-preservation

In this part, we prove that the MRF satisfies e-differential pri-
vacy based on two composition properties [42]. Suppose we have
a set of privacy mechanisms M = {Mq,..., My} and each M; pro-
vides ¢; privacy guarantee, then the sequential composition and
parallel composition are described as follows:

Property 1 (Sequential Composition). Suppose M = {M, ..., My}
are sequentially performed on a dataset D, then M will provide
(Zf’: 1 €)-differential privacy.

Property 2 (Parallel Composition). Suppose M = {M,..., My}
are performed on a disjointed subsets of the entire dataset,
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Table 1

The description of UCI benchmark datasets.
Dataset Samples  Features  Classes  Dataset Samples  Features  Classes
Zoo 101 17 7 Banknote 1,372 4 2
Hayes 132 5 3 Cmc 1,473 9 3
Echo 132 12 2 Yeast 1,484 8 10
Hepatitis 155 19 2 Car 1,728 6 4
Wine 178 13 3 Image 2,310 19 7
Wdbc 569 39 2 Chess 3,196 36 2
Transfusion 748 5 2 Ads 3,729 1,558 2
Vehicle 946 18 4 Wilt 4,839 5 2
tic-tac-toe 958 9 2 Wine-Quality 4,898 11 7
Mammo 961 6 2 Phishing 11,055 31 2
Messidor 1,151 19 2 Nursery 12,960 9 5
Website 1,353 9 3 Connect-4 67,557 42 3

ie, {D1.....Dp}, respectively, then M will provide (max{e;}? ,)-
differential privacy.

Lemma 5. The impurity-based multinomial distribution M(¢) of fea-
ture selection is essentially the exponential mechanism of differential
privacy, and satisfies Bq-differential privacy.

Lemma 6. The impurity-based multinomial distribution M(g) of
splitting value selection is essentially the exponential mechanism of
differential privacy, and satisfies B,-differential privacy.

Lemma 7. The label selection of each leaf in a tree satisfies Bs-
differential privacy.

Based on the aforementioned properties and lemmas, we can
obtain the following theorem:

Theorem 2. The proposed MRF satisfies e-differential privacy when
the hyper-parameters By, B, and Bs satisfy By +B, =€/(d -t) and
B3 = €/t, where t is the number of trees, d is the depth of a tree such
that d < O(@), and k is the minimum leaf size.

5. Experiments

In this section, we empirically analyze the performance of our
MREF. Specifically, we compare the proposed MRF with four consis-
tent RF variants and Breiman’s RF [1] on the UCI datasets and in
the semantic segmentation task in Section 5.1 and Section 5.2, re-
spectively. In Section 5.3, we present the performance of MRF with
different privacy budgets to show the trade-off between the learn-
ing accuracy and the level of privacy preservation. In Section 5.4,
we further compare the performance of MRF with some advanced
RF variants, which have no properties of consistency or privacy
preservation. In Section 5.5, we provide more discussions of the
proposed MREF, including the effect of the proposed splitting rule,
the effect of hyper-parameters, and computational complexity.

5.1. Performance on UCI datasets

Dataset Selection. Similar to previous consistent RF works
[12,13,29], we conduct experiments on twenty-four UCI datasets,
which cover a wide range of sample size and feature dimensions
to be representative for evaluating the performance of different
algorithms. Besides, we have no additional preprocessing for the
datasets except for replacing the missing values with ‘-1’. The de-
scription of used datasets is shown in Table 1.

Baseline Selection. We compare MRF with Denill4 [12], BRF
[13], CompRF [29], and the standard RF (Breiman) [1] in the fol-
lowing evaluations[12,13,29]. are recent works about the consistent
RF. Note that except for the consistent variant (CompRF-C) in [29],
we also evaluate its inconsistent version, denoted as CompRF-I. Al-
though the Breiman’s RF [1] cannot meet the consistency, we also
provide its results as an important baseline for comparison.

Specifically, there are two main differences between MRF and
Breiman’s RF: (1) MRF uses the structure/estimation points parti-
tion for the training set while Breiman’s RF adopts bootstrap strat-
egy and (2) MRF uses the proposed Multinomial distributions split-
ting rule while Breiman’s RF adopts deterministic greedy split-
ting rule. To analyze which component contributes more to the
good performance of our MRF, we also compare Breiman’s RF with
the structure/estimation points partition (dubbed Breiman+SE) and
with the multinomial distributions based splitting rule (dubbed
Breiman+M).

Training Setup. We use the random generator implemented by
NumPy [44] to ensure the diversity of each tree in all forests. Sim-
ilar to the settings in [13], we carry out 10 times 10-fold cross val-
idation to generate 100 forests for each method to alleviate the
influence of randomness. All forests have t = 100 trees, minimum
leaf size k = 5. Gini index is used as the impurity measure except
for CompRF. In Denil14, BRF, CompRF, and RF, we set the size of
the set of candidate features to +/D. The partition rate of all con-
sistent RF variants is set to 1. All settings stated above are based
on [12,13]. In MRF, we set B; = B, = 10 and B3 — oo in all datasets,
and other hyper-parameters of baseline methods are set according
to their paper.

Results. As shown in Table 2, MRF significantly exceeds all ex-
isting consistent RF variants, including Denil14, BRF, and CompRF-
C. For example, MRF achieves more than 2% improvement in most
cases, compared with the state-of-the-art consistent method BRF.
Compared to the CompRF-I which is the inconsistent version of
CompRF-C, our method achieves higher accuracy on twenty-two
datasets. Besides, the performance of the MRF even surpasses
Breiman’s original RF on fourteen datasets, where the advantage
of the MREF is statistically significant on eleven. To the best of our
knowledge, this has never been achieved by any other consistent
RF variants. Moreover, our method achieves a high average rank-
ing, which further verifies that the performance of MRF is com-
parable with the Breiman’s RF. Note that we have not fine-tuned
the hyper-parameters such as Bj, By, B3 and t. The performance
of the MRF might be further improved with the tuning of these
parameters, which would bring additional computational complex-
ity. Moreover, the performance of the Breiman+M is better than
that of the Breiman+SE in most cases. It shows that our new split-
ting rule contributes more than the structure/estimation partition
in improving the performance of MRE.

5.2. Performance in semantic segmentation
Task Description. We treat the segmentation as a pixel-wise

classification and build the dataset based on aerial images®. Each
pixel of these images are labeled for one of two semantic classes:

3 https://github.com/dgriffiths3/ml_segmentation
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Table 2
Accuracy (%) of different RFs on benchmark UCI datasets.

Dataset Denill4  BRF CompRF-C ~ MRF CompRF-1  Breiman  Breiman+SE  Breiman+M
Zoo 80.00 85.00 87.69 90.64" 9339 87.38 90.95 96.64
Hayes 50.93 4535  45.82 79.46'  46.04 77.58 79.04 84.09
Echo 78.46 88.46  89.63 91.72"  88.09 90.64 91.97 90.52
Hepatitis 62.17 63.46  62.50 64.32 58.33 64.05 65.60 60.74
Wine 96.80 96.78  71.38 97.58 74.37 97.51 97.81 97.92
Wdbc 92.86 95.36 9239 95.78 94.26 96.01 95.29 96.52
Transfusion 72.97 77.70  76.53 78.53 75.28 79.52° 78.41 74.51
Vehicle 68.81 71.67  59.68 73.54 64.86 74.70° 73.16 75.47
Tic-tac-toe 84.07 79.64  74.53 98.01"  77.81 87.97 97.76 98.92
Mammo 79.17 81.25  76.57 81.86 78.72 82.31° 82.06 80.02
Messidor 65.65 65.21  65.62 67.14 66.14 68.35° 66.90 68.46
Website 85.29 85.58  85.98 89.80" 88.34 88.12 90.03 90.04
Banknote 98.29 98.32  99.36 99.49"  99.02 99.12 99.02 99.67
Cmc 53.60 5463 5393 56.12"  54.61 55.11 55.97 53.42
Yeast 58.80 5838 14.15 61.03 10.66 61.71 61.06 60.96
Car 88.02 9343  79.07 96.30 92.17 97.42° 96.42 97.47
Image 95.45 96.06  93.99 97.47 96.16 97.71 97.07 98.31
Chess 61.32 9712 94.77 99.25"  97.49 98.72 99.04 99.49
Ads 85.99 9443  96.05 96.76 96.44 97.59° 96.84 97.94
Wilt 97.16 97.25  97.23 98.56 98.27 98.10 97.83 98.57
Wine-Quality ~ 57.31 56.68  53.22 60.56 55.06 64.78° 61.15 69.81
Phishing 94.35 94.47 9544 96.07"  96.45 95.56 96.21 97.19
Nursery 93.42 93.52 91.01 99.28" 9567 96.89 98.61 99.78
Connect-4 66.19 76.75  72.82 8146'  76.27 80.05 81.54 84.02
Average Rank  6.83 5.83 6.71 2.75 5.58 3.08 3.00 2.21

1. We carry out Wilcoxon’s signed-rank test [43] to test for the difference between the results from the MRF and the
standard RF at significance level 0.05. 2. Among the four consistent RF variants, the best result is indicated in boldface.

»on

3. " indicates MRF is significantly better than the standard RF. 4. "e

indicates the standard RF is significantly better

than MRE. 5. The last line shows the average rank of different methods across all datasets.
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Fig. 3. Comparison of different RFs on the pixel-wise classification task with two metrics: the pixel-wise accuracy (PA) and the intersection over union (IOU). The higher the
PA and I0U, the better the performance. The standard deviation is indicated by the error bar.

building or not building. Except for the RGB values of each pixel,
we also construct some other widely used features. Specifically, we
adopt local binary pattern [45] with radius 24 to characterize tex-
ture, and calculate eight Haralick features [46] (including angular
second moment, contrast, correlation, entropy, homogeneity, mean,
variance, and standard deviation). We sample 10,000 pixels with-
out replacement for training, and test the performance on the test
image. To reduce the effect of randomness, we repeat the exper-
iments 5 times with different training set assignments. To evalu-
ate the performance, we adopt two classical metrics, including the
pixel-wise accuracy (PA) and intersection over union (loU). Besides,
all settings are the same as the descriptions in Section 5.1.
Results. As shown in Fig. 3, the performance of MRF is better
than that of RF. Compare with existing consistent RF, the improve-
ment of MRF is more significant. Besides, Breiman+M is better than
Breiman+SE in terms of both PA and IOU, which further verify the
effectiveness of the proposed splitting rule. We also visualize the
segmentation results of MRF, as shown in Fig. 4. Although the per-

formance of MRF may not be as good as some state-of-the-art deep
learning based methods, it still achieves plausible results.

5.3. Performance of differential privacy

In this section, we investigate the performance of privacy-
preservation for the proposed MRF. We conduct experiments to
compare MRF with a recent RF variant [35] (denoted as SmoothRF),
in terms of the privacy budget € and the number of trees t, re-
spectively. Specifically, for our MRF scheme, based on Theorem 2,
given the fixed privacy budget €, we set By =B, = ¢€/2(d -t) and
B3 = €/t, where t is the number of trees and d is the depth of
a tree. Besides, we observe that the value of d constructed based
on selected datasets is no more than 10, therefore we directly set
d = 10 for simplicity. We implement the SmoothRF [35] based on
the open-source code* with the default setting.

4 https://github.com/sam-fletcher/Smooth_Random_Trees
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Fig. 4. Visualization result of the proposed MRF. (a): Aerial image; (b): Groud-truth; (c): The heat map of the prediction. The pixel is predicted as within the building area
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Table 3
Accuracy (%) of compared advanced RFs and our MRF on UCI datasets.

Dataset RoF-PCA  RoF-LDA  MPSVM-T  MPSVM-P  MPSVM-N  HobRaF = MRF

Zoo 89.58 88.10° 82.38° 88.69° 82.61° 95.35" 90.64
Hayes 70.79° 72.29° 65.64° 65.02° 60.77° 79.27 79.46
Echo 92.15 91.16 84.72° 91.46 85.71° 90.45° 91.72
Hepatitis 65.237 65.83 63.40 63.87 64.53 63.95 64.32
Wine 96.21° 98.15" 97.47 97.58 96.23° 98.417 97.58
Wdbc 95.51 97.207 96.877 96.59 97.147 96.997 95.78
Transfusion 77.95 78.39 78.64 78.88 77.22¢ 76.70° 78.53
Vehicle 76.04" 78.77F 75.76" 75.107 72.69 79.157 73.54
Tic-tac-toe 86.35° 85.34* 83.49° 84.81° 81.34° 92.01° 98.01
Mammo 82.807 82.561 82.48f 82.521 82.657 81.48 81.86
Messidor 74.957 74.74" 73.70" 72.36" 73.26" 74.50" 67.14
Website 87.69° 88.18° 86.01° 87.23 85.22° 89.49 89.80
Banknote 99.97 99.84 99.91 99.90 99.93 99.91 99.49
Cmc 55.14* 54.73¢ 54.52° 54.49* 51.97° 53.72° 56.12
Yeast 61.20 61.32 55.35° 61.43 41.88° 62.057 61.03
Car 95.69° 96.00 91.37° 95.35° 86.42° 97.86" 96.30
Image 97.26 97.34 96.46* 97.10 93.68° 98.12f 97.47
Chess 98.10° 98.22¢ 93.82¢ 97.75* 82.38° 98.94 99.25
Ads 97.13 96.74 89.13° 97.337 86.60° 97.457 96.76
Wilt 98.56 98.61 98.21 98.11° 98.24 98.17 98.56
Wine-Quality ~ 64.19% 64.26" 59.30 63.821 44.88° 71.27F 60.56
Phishing 95.81 95.60 95.04* 95.42 94.54° 96.74" 96.07
Nursery 97.13° 96.35° 94.26° 97.01° 92.09° 98.50 99.28
Connect-4 77.56° 76.83° 65.83° 76.73° 65.83° 87.407 81.46
Average Rank  3.21 3.17 5.33 4.46 5.83 2.75 3.25

1. We carry out Wilcoxon’s signed-rank test [43] to test for the difference between the results from the
MRF and other RF variants at significance level 0.05. 2. "e” indicates MRF is significantly better than this
method. 3. "" indicates this method is significantly better than MRF. 4. The last line shows the average

rank of different methods across all datasets.

To show the performance of both methods, we set € ¢
{0.1,0.5,1} and t € {1, 2,4, 8, 16, 32, 64}, respectively. As shown in
Fig. 5, the MRF can achieve better performance compared with the
SmoothRF in terms of different € and t. Specifically, when the pri-
vacy budget € is relatively small, the added noise is relatively high
which results in performance degradation. In contrast, when € is
relatively big, the added noise is relatively low, and thus theper-
formance will increase. Besides, when the number of trees t in-
creases, the performance of MRF increases significantly, while the
performance of SmoothRF decreases significantly.

5.4. Comparison with advanced random forest variants

Besides the comparison with the consistent and privacy-
preservation RFs, we also conduct experiments to compare the
MRF with some advanced RFs, including rotation random forests
[18] and oblique random forests [21,22]. Specifically, there are two
rotation RFs (i.e., RoF-PCA and RoF-LDA) with different transfor-
mations, including principal component analysis (PCA) and linear
discriminate analysis (LDA). We present the results of three multi-
surface proximal support vector machine (MPSVM) based oblique
random forests[21], i.e., MPSVM-based RFs with Tikhonov regular-
ization (MPSVM-T), MPSVM-based RFs with axis-parallel regular-
ization (MPSVM-P), and MPSVM-based RFs with NULL space reg-
ularization (MPSVM-N). We implement the above methods using
the open-source code®. We also compare with a recent method
that employs linear classifiers at each non-leaf node, namely, het-
erogeneous oblique random forest (HobRaF) [22]. HobRaF is imple-
mented based on its open-sourced codes®. Other settings are the
same as those used in Section 5.1.

As shown in Table 3, HobRaF achieves remarkable performance
with the best average rank. Nevertheless, the performance of MRF

5 https://drive.google.com/file/d/0B9nwWnaaZcNWZGFuRnZYTIR2LVK view?usp=
sharing

6 https://github.com/P-N-Suganthan/CODES/blob/master/2020-PR]-Het-ob-RaF.
zip

is still on par with that of the HobRaF. Besides, MRF has theoretical
consistency and privacy-preservation property, which is the main
merit of the proposed method.

5.5. Discussions

5.5.1. Results of RFs under optimal hyper-parameters

To keep in line with previous works [1,12,13], we compare MRF
with all baseline methods under their default settings. However,
these parameters may not be optimal for each dataset. To provide
a more comprehensive comparison, we select some representative
datasets and tune the parameters of all methods to achieve their
optimal performance in each dataset based on the grid-search.

As shown in Table 4-5, all methods achieve better performance
than training without tuning the hyper-parameters, especially ad-
vanced RFs evaluated in Table 5. In particular, MRF is still better
than all other consistent RF variants and its performance is on par
with Breiman’s RF and other advanced RF variants under the use
of optimal hyper-parameters. These results verify the effectiveness
of MRF again.

5.5.2. The effect of By and B,

We evaluate the performance of the consistent MRF under dif-
ferent hyper-parameters B; and B,. Specifically, we consider a
range of [0,20] for both B; and B,, and other hyper-parameters are
the same as those stated in Section 5.1.

Fig. 6 displays the results for six datasets representing small,
medium and large datasets. It shows that the performance of MRF
is significantly improved as B, increases from zero, and it further
becomes relatively stable when B, > 10. Similarly, the performance
also improves as B; increases from zero, but the effect is not ob-
vious. When B, is too small, the resulting multinomial distribu-
tions would allow too much randomness, leading to the poor per-
formance of the MRF. Besides, as shown in the figure, although the
optimal values of B; and B, may depend on the specific character-
istics of a dataset, such as the outcome scale and the dimension of
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Table 4
Accuracy (%) of consistent RFs and Breiman’s RF with optimal hyper-parameters.
Dataset Denill4  BRF CompRF-C  MRF CompRF-I  Breiman  Breiman+SE  Breiman+M
Hayes 66.62 62.52  45.82 82.28  46.86 80.53 80.12 85.70
Echo 91.66 91.75  89.93 92.11  90.17 92.14 92.00 91.90
Hepatitis  64.03 65.66  62.50 66.72  60.26 65.06 67.77 64.77
Vehicle 72.96 7234  62.57 73.75 6494 74.97 73.45 75.93
Yeast 59.84 59.09 16.17 61.79 11.16 62.03 61.81 62.60
Wilt 97.72 97.66  97.76 98.56  98.43 98.30 97.90 98.83
Table 5
Accuracy (%) of advanced RFs and our MRF with optimal hyper-parameters.
Dataset RoF-PCA  RoF-LDA  MPSVM-T  MPSVM-P  MPSVM-N  HobRaF = MRF
Hayes 80.92 80.62 74.46 79.38 70.77 80.31 82.28
Echo 92.92 92.00 91.08 92.31 90.77 91.38 92.11
Hepatitis  68.27 67.47 65.87 66.67 65.60 64.00 66.72
Vehicle 81.08 84.92 81.88 78.70 74.60 83.47 73.75
Yeast 64.19 65.47 60.59 64.64 57.88 62.39 61.79
Wilt 98.76 98.80 98.83 98.80 98.69 98.71 98.56
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Fig. 6. Accuracy (%) of the MRF under different hyper-parameter values.

the impurity decrease vector, at our default setting (B; = B, = 10),
the MRF achieves competitive performance in all datasets.

5.5.3. Computational complexity analysis

For a given dataset, we suppose that its feature dimension is D
and it consists of n samples. In the best case the depth would be
O(logn) for a balanced binary tree, the theoretical computational
complexity of constructing a tree would be O(D - nlogn). Because
the complexity of the RF is the summation of the complexities of
constructing individual trees, the complexity of MRF with t trees
should be O(t - D - nlogn). Note that this analysis ignores the com-
putational time involved in selecting the splitting feature and value
for each node.

6. Conclusion and future work

In this paper, we proposed a novel random forest framework,
dubbed multinomial random forest (MRF), based on which we ana-
lyzed its consistency and privacy-preservation. In the MRF, we pro-
posed two impurity-based multinomial distributions for the selec-
tion of splitting feature and splitting value, respectively. Accord-
ingly, the best split point has the highest probability to be cho-
sen, while other candidate split points that are nearly as good as
the best one will also have a good chance to be selected. This split

process is more reasonable compared with the greedy splitting cri-
terion used in existing methods. Besides, we also introduced an-
other exponential mechanism of differential privacy for selecting
the label of a leaf to discuss the privacy-preservation of MRF. Ex-
periments and comparisons demonstrated that the MRF surpassed
existing consistent random forest variants, and its performance is
on par with advanced random forests. It is by far the first random
forest variant that is consistent and has comparable performance
to the standard random forest simultaneously.

For future work, although our MRF achieves the best per-
formance among all consistent RFs, it can not always surpass
Breiman’s RF. Therefore, how to obtain a significantly better RF in
theory and practice is still an open problem. Besides, in this pa-
per, the MRF is designed only for classification tasks. We will fur-
ther explore how to extend the proposed MRF in regression tasks
in our future work. Moreover, the proposed multinomial distribu-
tion based randomization strategy is only explored in RFs. We will
explore whether it is also effective in improving other algorithms
with the deterministic selection process.
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Appendix A. The Proof of Lemma 3

Proof. Recall that the normalized impurity decrease vector Ie
[0,11°. When I = (1,0, -- -, 0), the probability that the first feature

is selected for splitting is the largest, and when I = (0,1,---,1),
the probability reaches smallest. Therefore
1 eb
Pt —— <P A ———.
S irmones STV S FETp o
g

Appendix B. The Proof of Lemma 4

Proof. Suppose m is the number of possible splitting values of fea-
ture A, similar to Lemma 3, the probability that a value is selected
for splitting satisfies the following restriction:

1 eb

m <Pr(v) < (B.1)

ebr+ (m-1)

In this case,

/ f(w)dv
Ui A®

Pr(ve U, AD|A) =
(e Uiz A%H) / fw)dv

—dv
/U,'-V;zl a0 14+ (m—1)eb:

eB: d
/AeBZ-i-(m—l) v
. N=-2 eky+(@m-1)
lim

met+o N B4 (m—1)e2B
—N2p2 2 p)

(B.2)

> lim
m—+o00

g

Appendix C. The Proof of Theorem 1

Proof. When B; — oo, the prediction in each node is based on ma-
jority vote, therefore it meets the prerequisite of Lemma 2. Ac-
cordingly, we can prove the consistency of MRF by showing that
it meets two requirements in Lemma 2.

Firstly, since MRF requires |AE(X)| > k where k — oo as 1 — oo,
INE(X)| = oo when n — oo is trivial.

Let Vi (a) denote the size of the a-th feature of Aj; (X), where X
falls into the node Npn(X) at m-th layer. To prove diam(N (X)) —
0 in probability, we only need to show that E(Vi;(a)) — 0 for all
Aq € A. For a given feature Aq, let Vi (a) denote the largest size of
this feature among all children of node N;,_1(X). By Lemma 4, we
can obtain
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B0(@) = (1= BV 1@ + R @ = (1= 12 )V (@)
(€1

By Lemma 3, we can know

B V(@) = (1= PV 1 (@ + PE;(@) = (1= 0 RB Vs (@)
(C2)

Since Vp(a) =1,

B (@) = (1- yRB) (€3)

Unlike the deterministic rule in the Breiman, the splitting point
rule in our proposed MRF has randomness, therefore the final se-
lected splitting point can be regarded as a random variable W;(i e
{1,...,m}), whose cumulative distribution function is denoted by
Fy;-

Let M; = min(W;, 1 —W;) denotes the size of the root smallest
child, we have

Pr(M; 2 0V/™) =Pr(cV/™ <W; =1 -0"™) = Fy, (1 —0'/™) — Ry, (c'/™).
(C4)

Without loss of generality, we normalize the values of all at-
tributes to the range [0, 1] for each node, then after m splits, the
smallest child at the m-th layer has the size at least o with the
probability at least

(Fy,(1 = 0V/™) — Ry, (a'/™)). (C.5)

e E

Since Fy; is right-continuous at 0 and left-continuous at 1,
VYa; > 0,30, > 0 s.t.

m

[T(Ew(=c"™) —Fy(a™) > (1 —a)" > 1-a.

i=1

Since the distribution of X has a non-zero density, each node
has a positive measure with respect to wy. Defining

b= N:a nodernatlrg—th level Hx (N)’
we know p > 0 since the minimum is over finitely many nodes and
each node contains a set of positive measure.

Suppose the data set with size n, the number of data points
falling in the node A, where A denotes the m-th level node with
measure p, follows Binomial(n, p). Note that this node A is the one
containing the smallest expected number of samples. WLOG, con-
sidering the partitionrate = 1, the expectation number of estima-
tion points in A is np/2. From Chebyshevs inequality, we have

Pr(INE(X)| < k) =Pr (INE(X)| - 22 < k- )

=Pr([WFOOI- 2| > [k F|) = 3%
_ _p(-p 2

ke

(C.6)

where the first inequality holds since k — % is negative as n — oo
and the second one is by Chebyshev’s inequality.

Since the right hand side goes to zero as n — oo, the node con-
tains at least k estimation points in probability. By the stopping
condition, the tree will grow infinitely often in probability, i.e.,

m — oo.

(C.7)

By (C.3) and (C.7), the theorem is proved. O
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Appendix D. The Proof of Lemma 5

Proof. As we all know, the softmax function is
exp (z;)
Y1 eXp ()
Obviously, the above formula is the same as the exponential mech-

anism (see the formula (2) in Definition 2). In what follows, we
prove M(¢) satisfies By-differential privacy.

For any two neighboring datasets DS and D5, and any selected
feature A € A, we can obtain

oxp (210

exp (317(7;’5.A>)

fx)j=

- S
B, (1(735,,4)2 io ,A)) - (l%])

(D.1)
where the quality function IA(DSA,A) represents the a-th item of
the normalized feature vector I based on the structure points
dataset DS, and through the normalized operation (i.e., Af=
max,,, ;s s [[(DS, A) — I(D"®,A)| = 1) the corresponding sensitiv-
ity is 1. Accordingly, the privacy of the split feature mechanism
satisfies that for any output A of M(¢), we can obtain

= exp

Byi(DS.A
exp (1220

PILM(¢. D) =A] _ Teaew(M57)
PrlM(¢p. D) =A] exp<<7)>

exp (BIGL) y, exp (2150)

exp (B]i(g/sm) | D wea €XP (M)
Yreaexp () exp (2150

By I(DS A
D aea ©XP (%)

fipS A’
B] Bl ZA/EA exp (Bll(g A ))
S exp (7) HexP (7) e
ZA’eAeXp< if(o>, ))
= exp (B1).

Therefore, for each layer of a tree, the privacy budget consumed
by the split mechanism of features is B;. That is, M(¢) satisfies
B -differential privacy. O

Appendix E. The Proof of Lemma 6

Proof. Similar to the proof of Lemma 5, the split value selection
M(g) is essentially the exponential mechanism of differential pri-
vacy. For any two neighboring datasets DS and D, and any se-

lected split value a;[i] € a; = {a;[1], ..., a;[m]} of the feature A;, we
can obtain
B i) (0S.ai]) . .
exp ( B, (10 (0%, i) -1 (0. i) ) 5,
e <exp (=),
<Bzi(j)(D’S,aj[i])> P 2 xP ( 2 )
exp | ———~1—

where the quality function I (DS, a;[i]) represents the i-th item
of the normalized feature vector I) based on the structure points
dataset D%, and the corresponding sensitivity is 1 through the nor-
malized operation.
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Accordingly, for any output a;[i] of M(¢), we can obtain
exp (Bzi(f’fs.a,-[m)

By () (DS ,a;[K])
Zﬂj[k]EA]v exp (%

exp (Bzi(])(z/s,aj[i])
—
Taj(k1en; €XP (732'(“(2 ﬂj[kh)
Bof) (DS, a;[i]) BoID (D5 a;[K])
exp ( 2 5 i ) Zaj[k]GAj exp < 2 > j
= BAO (DS a i)\ B,10) (DS, a;[K])
exp (%) Za,[k]eA, exp (%)
B B i(f)(psya.[k])
B, 2_a;{klea, EXP (%)exp (72 7 >
S &P (7> ' B0 (%.,[K])
Zaj[k]eAj eXp\——=

BoiV) (DS,a;[k])
B, B, Z"f[kleAf xp <%>
< exp (7> exp (7) BoiU) (DS, a;[K])
2_a;{klea; €XP (fl)
= exp (By).

Pr [M(go, DS) = aj[i]]

Pr[M(p. D) = ajfi]

Thus, the selection mechanism of split value for a specific feature
satisfies B,-differential privacy. O

Appendix F. The Proof of Lemma 7

Proof. For any two neighboring datasets DF and p'E, and any label
cek=1{1,2,...,K} of a specific leaf, we can obtain

exp (Bm(;f,c))

/E
exp (an(g .c))

where the quality function n(DE, ¢) represents the empirical prob-
ability that the leaf has the label ¢, and thus the corresponding

By (n(0F.0) - n(0".0))

= exp 3 < exp (32—3) (F1)

sensitive is 1. Then, for any output c € {1, 2,...,K} of this leaf, we
can obtain
1] E,C
exp By /(;J )
—
Prlh(x,DF) =] oo (252)
Pl D) = c] oy (250
ZC/E’C exp (483)1(1:?(/))

E
exp (3377(;35,6)> Sy €XP (B;n(g c >)
= vE ’ v
exp (Ban(g ,c)) > ook €XP (&n(?ﬁﬂ)
B B3n(DE ¢
Eecr exp (%) exp (2252 )

Bsn(DE ¢
ZC/E)C exp (M)

E
Bs B3 Lcex €XP <B3”(§ ’C)>
gexp(z)lexp<2> B3 (DE, ¢/
ZC’EK eXp( 30(2 <C)>
— exp (Bs).

Since each leaf divides the dataset DE into disjoint subsets, accord-
ing to Property 2, the label selection mechanism for the leaf in
each tree satisfies Bs-differential privacy. O
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Appendix G. The Proof of Theorem 2

Proof. Based on Property 1 together with Lemma 5 and Lemma 6,
the privacy budget consumed for each layer of a tree is B; + B, =
€/(d-t). Since the depth of a tree is d, the total privacy budget
consumed by the generation of tree structure is d(B; +B,) = €/t.
Since the datasets DS and DF are disjoint, according to Property 2,
the total privacy budget of a tree is max{d(B; + B,), B3} = €/t.

As a result, the consumed privacy budget of the MRF contain-
ing t trees is ¢ .-t =€, which implies that the MRF satisfies e-
differential privacy. O
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